首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 433 毫秒
1.
For the large sparse systems of weakly nonlinear equations arising in the discretizations of many classical differential and integral equations, this paper presents a class of asynchronous parallel multisplitting two-stage iteration methods for getting their solutions by the high-speed multiprocessor systems. Under suitable assumptions, we study the global convergence properties of these asynchronous multisplitting two-stage iteration methods. Moreover, for this class of new methods, we establish their local convergence theories, and precisely estimate their asymptotic convergence factors under some reasonable assumptions when the involved nonlinear mapping is only assumed to be directionally differentiable. Numerical computations show that our new methods are feasible and efficient for parallely solving the system of weakly nonlinear equations.  相似文献   

2.
3.
We start with a discussion of coupled algebraic Riccati equations arising in the study of linear-quadratic optimal control problems for Markov jump linear systems. Under suitable assumptions, this system of equations has a unique positive semidefinite solution, which is the solution of practical interest. The coupled equations can be rewritten as a single linearly perturbed matrix Riccati equation with special structures. We study the linearly perturbed Riccati equation in a more general setting and obtain a class of iterative methods from different splittings of a positive operator involved in the Riccati equation. We prove some special properties of the sequences generated by these methods and determine and compare the convergence rates of these methods. Our results are then applied to the coupled Riccati equations of jump linear systems. We obtain linear convergence of the Lyapunov iteration and the modified Lyapunov iteration, and confirm that the modified Lyapunov iteration indeed has faster convergence than the original Lyapunov iteration.  相似文献   

4.
Bai  Zhong-Zhi 《Numerical Algorithms》1997,15(3-4):347-372
The finite difference or the finite element discretizations of many differential or integral equations often result in a class of systems of weakly nonlinear equations. In this paper, by reasonably applying both the multisplitting and the two-stage iteration techniques, and in accordance with the special properties of this system of weakly nonlinear equations, we first propose a general multisplitting two-stage iteration method through the two-stage multiple splittings of the system matrix. Then, by applying the accelerated overrelaxation (AOR) technique of the linear iterative methods, we present a multisplitting two-stage AOR method, which particularly uses the AOR-like iteration as inner iteration and is substantially a relaxed variant of the afore-presented method. These two methods have a forceful parallel computing function and are much more suitable to the high-speed multiprocessor systems. For these two classes of methods, we establish their local convergence theories, and precisely estimate their asymptotic convergence factors under some suitable assumptions when the involved nonlinear mapping is only directionally differentiable. When the system matrix is either an H-matrix or a monotone matrix, and the nonlinear mapping is a P-bounded mapping, we thoroughly set up the global convergence theories of these new methods. Moreover, under the assumptions that the system matrix is monotone and the nonlinear mapping is isotone, we discuss the monotone convergence properties of the new multisplitting two-stage iteration methods, and investigate the influence of the multiple splittings as well as the relaxation parameters upon the convergence behaviours of these methods. Numerical computations show that our new methods are feasible and efficient for parallel solving of the system of weakly nonlinear equations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
In the study of iterative methods with high order of convergence, Gander provides a general expression for iterative methods with order of convergence at least three in the scalar case. Taking into account an extension of this result, we define a family of iterations in Banach spaces with R-order of convergence at least four for quadratic equations.  相似文献   

6.
常微分方程向前步组合离散化方法   总被引:1,自引:1,他引:0  
费景高 《计算数学》1991,13(3):229-250
一、一般理论 关于常微分方程组初值问题的数值求解,[1]首先提出:对方程组中各个微分方程采用不同的数值积分公式和不同的积分步长同时进行数值积分的思想.由这种思想构造的算法称为组合算法,在大系统的数字仿真等数值计算中得到了广泛的应用.国外正在发展的多速率算法或多帧速算法,是它的特例.由于并行处理机系统的迅速发展,这类算法将会得到更广泛的应用和进一步的研究.  相似文献   

7.
In this paper, we are concerned with the construction and analysis of high order exponential splitting methods for the time integration of abstract evolution equations which are evolved by analytic semigroups. We derive a new class of splitting methods of orders three to fourteen based on complex coefficients. An optimal convergence analysis is presented for the methods when applied to equations on Banach spaces with unbounded vector fields. These results resolve the open question whether there exist splitting schemes with convergence rates greater then two in the context of semigroups. As a concrete application we consider parabolic equations and their dimension splittings. The sharpness of our theoretical error bounds is further illustrated by numerical experiments.  相似文献   

8.
In the first part of this paper, we give a survey on convergence rates analysis of quasi-Newton methods in infinite Hilbert spaces for nonlinear equations. Then, in the second part we apply quasi-Newton methods in their Hilbert formulation to solve matrix equations. So, we prove, under natural assumptions, that quasi-Newton methods converge locally and superlinearly; the global convergence is also studied. For numerical calculations, we propose new formulations of these methods based on the matrix representation of the dyadic operator and the vectorization of matrices. Finally, we apply our results to algebraic Riccati equations.  相似文献   

9.
We consider a discrete-time GALERKIN method for nonlinear evolution equations. We prove convergence properties of this method under various hypotheses. Moreover, we deal with iteration methods reducing the nonlinear GALERKIN equations to linear equations in finite dimensional spaces.  相似文献   

10.
The discretizations of many differential equations by the finite difference or the finite element methods can often result in a class of system of weakly nonlinear equations. In this paper, by applying the two-tage iteration technique and in accordance with the special properties of this weakly nonlinear system, we first propose a general two-tage iterative method through the two-tage splitting of the system matrix. Then, by applying the accelerated overrelaxation (AOR) technique of the linear iterative methods, we present a two-tage AOR method, which particularly uses the AOR iteration as the inner iteration and is substantially a relaxed variant of the afore-presented method. For these two classes of methods, we establish their local convergence theories, and precisely estimate their asymptotic convergence factors under some suitable assumptions when the involved nonlinear mapping is only B-differentiable. When the system matrix is either a monotone matrix or an H-matrix, and the nonlinear mapping is a P-bounded mapping, we thoroughly set up the global convergence theories of these new methods. Moreover, under the assumptions that the system matrix is monotone and the nonlinear mapping is isotone, we discuss the monotone convergence properties of the new two-tage iteration methods, and investigate the influence of the matrix splittings as well as the relaxation parameters on the convergence behaviours of these methods. Numerical computations show that our new methods are feasible and efficient for solving the system of weakly nonlinear equations. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
In this paper, we present some variants of Cauchy's method for solving non-linear equations. Analysis of convergence shows that the methods have fourth-order convergence. Per iteration the new methods cost almost the same as Cauchy's method. Numerical results show that the methods can compete with Cauchy's method.  相似文献   

12.
In this paper we propose numerical treatment for singular integral equations. The methods are developed by means of the Sinc approximation with smoothing transformations. Such approximation is an effective technique against the singularities of the equations, and achieves exponential convergence. Therefore the methods improve conventional results where only polynomial convergence have been reported. The resulting algebraic system is solved by least squares approximation and leap frog algorithm. Estimation of errors of the approximate solution is presented. Some experimental tests are presented to show the efficient of the proposed methods.  相似文献   

13.
The main purpose of this work is to provide a numerical method for the solution of Volterra functional integro-differential equations of neutral type based on a spectral approach. We analyze the convergence properties of the spectral method to approximate smooth solutions of Volterra functional integro-differential equations of neutral type. It is shown that for the neutral integro-differential equations, the spectral methods yield an exponential order of convergence.  相似文献   

14.
Quasi-Newton equations play a central role in quasi-Newton methods for optimization and various quasi-Newton equations are available. This paper gives a survey on these quasi-Newton equations and studies properties of quasi-Newton methods with updates satisfying different quasi-Newton equations. These include single-step quasi-Newton equations that use only gradient information and that use both gradient and function value information in one step, and multi-step quasi-Newton equations that use the gradient information in last m steps. Main properties of quasi-Newton methods with updates satisfying different quasi-Newton equations are studied. These properties include the finite termination property, invariance, heredity of positive definite updates, consistency of search directions, global convergence and local superlinear convergence properties.  相似文献   

15.
In this paper, a parametric variant of Steffensen-secant method and three fast variants of Steffensen-secant method for solving nonlinear equations are suggested. They achieve cubic convergence or super cubic convergence for finding simple roots by only using three evaluations of the function per step. Their error equations and asymptotic convergence constants are deduced. Modified Steffensen’s method and modified parametric variant of Steffensen-secant method for finding multiple roots are also discussed. In the numerical examples, the suggested methods are supported by the solution of nonlinear equations and systems of nonlinear equations, and the application in the multiple shooting method.  相似文献   

16.
Nowadays boundary elemen; methods belong to the most popular numerical methods for solving elliptic boundary value problems. They consist in the reduction of the problem to equivalent integral equations (or certain generalizations) on the boundary Γ of the given domain and the approximate solution of these boundary equations. For the numerical treatment the boundary surface is decomposed into a finite number of segments and the unknown functions are approximated by corresponding finite elements and usually determined by collocation and Galerkin procedures. One finds the least difficulties in the theoretical foundation of the convergence of Galerkin methods for certain classes of equations, whereas the convergence of collocation methods, which are mostly used in numerical computations, has yet been proved only for special equations and methods. In the present paper we analyse spline collocation methods on uniform meshes with variable collocation points for one-dimensional pseudodifferential equations on a closed curve with convolutional principal parts, which encompass many classes of boundary integral equations in the plane. We give necessary and sufficient conditions for convergence and prove asymptotic error estimates. In particular we generalize some results on nodal and midpoint collocation obtained in [2], [7] and [8]. The paper is organized as follows. In Section 1 we formulate the problems and the results, Section 2 deals with spline interpolation in periodic Sobolev spaces, and in Section 3 we prove the convergence theorems for the considered collocation methods.  相似文献   

17.
The Newton method and the quasi-Newton method for solving equations of smooth compositions of semismooth functions are proposed. The Q-superlinear convergence of the Newton method and the Q-linear convergence of the quasi-Newton method are proved. The present methods can be more easily implemented than previous ones for this class of nonsmooth equations.  相似文献   

18.
The construction of initial conditions of an iterative method is one of the most important problems in solving nonlinear equations. In this paper, we obtain relationships between different types of initial conditions that guarantee the convergence of iterative methods for simultaneously finding all zeros of a polynomial. In particular, we show that any local convergence theorem for a simultaneous method can be converted into a convergence theorem with computationally verifiable initial conditions which is of practical importance. Thus, we propose a new approach for obtaining semilocal convergence results for simultaneous methods via local convergence results.  相似文献   

19.
Summary In this paper we consider the following Newton-like methods for the solution of nonlinear equations. In each step of the Newton method the linear equations are solved approximatively by a projection method. We call this a Projective Newton method. For a fixed projection method the approximations often are the same as those of the Newton method applied to a nonlinear projection method. But the efficiency can be increased by adapting the accuracy of the projection method to the convergence of the approximations. We investigate the convergence and the order of convergence for these methods. The results are applied to some Projective Newton methods for nonlinear two point boundary value problems. Some numerical results indicate the efficiency of these methods.
  相似文献   

20.
In this paper, we present three-point and four-point methods for solving nonlinear equations. The methodology is based on King’s family of fourth order methods [R.F. King, A family of fourth order methods for nonlinear equations, SIAM J. Numer. Anal. 10 (1973) 876–879] and further developed by using rational function approximations. The three-point method requires four function evaluations and has the order of convergence eight, whereas the four-point method requires five function evaluations and has the order of convergence sixteen. Therefore, the methods are optimal in the sense of Kung–Traub hypothesis. The proposed schemes are compared with closest competitors in a series of numerical examples. Moreover, theoretical order of convergence is verified in the examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号