首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a simple evolutionary procedure based on finite element analysis to minimize the weight of structures while satisfying stiffness requirements. At the end of each finite element analysis, a sensitivity number, indicating the change in the stiffness due to removal of each element, is calculated and elements which make the least change in the stiffness; of a structure are subsequently removed from the structure. The final design of a structure may have its weight significantly reduced while the displacements at prescribed locations are kept within the given limits. The proposed method is capable of performing simultaneous shape and topology optimization. A wide range of problems including those with multiple displacement constraints, multiple load cases and moving loads are considered. It is shown that existing solutions of structural optimization with stiffness constraints can easily be reproduced by this proposed simple method. In addition some original shape and layout optimization results are presented.  相似文献   

2.
This work presents a modified version of the evolutionary structural optimization procedure for topology optimization of continuum structures subjected to self-weight forces. Here we present an extension of this procedure to deal with maximum stiffness topology optimization of structures when different combinations of body forces and fixed loads are applied. Body forces depend on the density distribution over the design domain. Therefore, the value and direction of the loading are coupled to the shape of the structure and they change as the material layout of the structure is modified in the course of the optimization process. It will be shown that the traditional calculation of the sensitivity number used in the ESO procedure does not lead to the optimum solution. Therefore, it is necessary to correct the computation of the element sensitivity numbers in order to achieve the optimum design. This paper proposes an original correction factor to compute the sensitivities and enhance the convergence of the algorithm. The procedure has been implemented into a general optimization software and tested in several numerical applications and benchmark examples to illustrate and validate the approach, and satisfactorily applied to the solution of 2D, 3D and shell structures, considering self-weight load conditions. Solutions obtained with this method compare favourably with the results derived using the SIMP interpolation scheme.  相似文献   

3.
Optimum design of structures has been traditionally focused on the analysis of shape and dimensions optimization problems. However, more recently a new discipline has emerged: the topology optimization of the structures. This discipline states innovative models that allow to obtain optimal solutions without a previous definition of the type of structure being considered. These formulations obtain the optimal topology and the optimal shape and size of the resulting elements. The most usual formulations of the topology optimization problem try to obtain the structure of maximum stiffness. These approaches maximize the stiffness for a given amount of material to be used. These formulations have been widely analyzed and applied in engineering but they present considerable drawbacks from a numerical and from a practical point of view. In this paper the author propose a different formulation, as an alternative to maximum stiffness approaches, that minimizes the weight and includes stress constraints. The advantages of this kind of formulations are crucial since the cost of the structure is minimized, which is the most frequent objective in engineering, and they guarantee the structural feasibility since stresses are constrained. In addition, this approach allows to avoid some of the drawbacks and numerical instabilities related to maximum stiffness approaches. Finally, some practical examples have been solved in order to verify the validity of the results obtained and the advantages of the proposed formulation.  相似文献   

4.
Gregor Kotucha  Klaus Hackl 《PAMM》2004,4(1):336-337
The discretization of topology design problems on the basis of the finite‐element‐method results in general in large‐scale combinatorial optimization problems, which are usually relaxed by the introduction of a continuous material density function as design variable. To avoid optimal designs containing unfavourable microstructures such as the well‐known “checkerboard” patterns, the relaxed problem can be regularized by the X‐SIMP‐approach, which penalizes intermediate density values as well as high density gradients within the design domain. In this context we discuss numerical aspects of the X‐SIMP‐based regularization such as the discretization of the regularized problem, the formulation of the corresponding stiffness matrix and the numerical solution of the discretized problem. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
This paper considers the mathematical properties of discrete or discretized mechanical structures under multiple loadings which are optimal w.r.t. maximal stiffness. We state a topology and/or sizing problem of maximum stiffness design in terms of element volumes and displacements. Multiple loads are handled by minimizing the maximum of compliance of all load cases, i.e., minimizing the maximal sum of displacements along an applied force. Generally, the problem considered may contain constraints on the design variables. This optimization problem is first reformulated in terms of only design variables. Elastic equilibrium is hidden in potential energy terms. It is shown that this transformed objective function is convex and continuous, including infinite values. We deduce that maximum stiffness structures are dependent continuously on the bounds of the element volumes as parameters. Consequently, solutions to sizing problems with small positive lower bounds on the design variables can be considered as good approximations of solutions to topology problems with zero lower bounds. This justifies heuristic approaches such as the well-known stress-rationing method for solving truss topology problems.  相似文献   

6.
阻尼复合结构的抑振性能取决于材料布局和阻尼材料特性.该文提出了一种变体积约束的阻尼材料微结构拓扑优化方法,旨在以最小的材料用量获得具有期望性能的阻尼材料微结构.基于均匀化方法,建立阻尼材料三维微结构有限元模型,得到阻尼材料的等效弹性矩阵.逆用Hashin-Shtrikman界限理论,估计对应于期望等效模量的阻尼材料体积分数限,并构建阻尼材料体积约束限的移动准则.将获得阻尼材料微结构期望性能的优化问题转化为体积约束下最大化等效模量的优化问题,建立阻尼材料微结构的拓扑优化模型.利用优化准则法更新设计变量,实现最小材料用量下的阻尼材料微结构最优拓扑设计.通过典型数值算例验证了该方法的可行性和有效性,并讨论了初始微构型、网格依赖性和弹性模量等对阻尼材料微结构的影响.  相似文献   

7.
The paper presents the algorithm for obtaining “the near optimal” topology very fast, based on the first optimization steps strain energy analysis. The objective function is the compliance of the structure. It is equal to the strain energy and it is minimized under the body mass constraints. Because the material density is proportional to the strain energy accumulated in discrete material point, the identification of more and less effort domains especially for the first optimization steps let analyse the structure from the topology point of view. This identification is the base of relative faster finding out material domains and void domains within the design domain which leads to the topology, which is very similar to the optimal topology even from the strain energy level point of view. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The objective of topology optimization is to find a mechanical structure with maximum stiffness and minimal amount of used material for given boundary conditions [2]. There are different approaches. Either the structure mass is held constant and the structure stiffness is increased or the amount of used material is constantly reduced while specific conditions are fulfilled. In contrast, we focus on the growth of a optimal structure from a void model space and solve this problem by introducing a variational problem considering the spatial distribution of structure mass (or density field) as variable [3]. By minimizing the Gibbs free energy according to Hamilton's principle in dynamics for dissipative processes, we are able to find an evolution equation for the internal variable describing the density field. Hence, our approach belongs to the growth strategies used for topology optimization. We introduce a Lagrange multiplier to control the total mass within the model space [1]. Thus, the numerical solution can be provided in a single finite element environment as known from material modeling. A regularization with a discontinuous Galerkin approach for the density field enables us to suppress the well-known checkerboarding phenomena while evaluating the evolution equation within each finite element separately [4]. Therefore, the density field is no additional field unknown but a Gauß-point quantity and the calculation effort is strongly reduced. Finally, we present solutions of optimized structures for different boundary problems. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Topology optimization has gained prime significance due to increasing demands of lightweight components. In this paper, a general mathematical formulation of topology optimization is presented with some imperative manufacturing constraints for maximizing the stiffness of a structure with mixed boundary conditions. A methodology is implemented to determine the optimal configuration of operative structural components by executing TOSCA in batch-process mode with ANSYS software. CAD viable design is attained by smoothing the topological optimized surfaces. The geometry at the maximum stressed areas is also optimized. Analysis of the customized reduced weight configuration reveals that it comprises the harmonized stress distribution and improved structural performance.  相似文献   

10.
Ryszard Kutylowski 《PAMM》2006,6(1):701-702
The structure design points stress analysis for succeeding optimization steps is the base of the topology optimization algorithm. Because the material density of the material is proportional to the strain energy we can predict how to change the density for each design point for the next optimization steps. Proposed procedure make the optimization process faster and final topology is finally more optimal than topology obtained using standard optimization procedures. This stress analyzing procedure, can be treated as a hardware of the sensors being the part of the smart structure for the real time structure reconstruction. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The topology optimization of load-bearing structural components for reducing attitude control efforts of miniature space vehicles is investigated. Based on the derivation of the cold gas consumption rate of three-axis stabilization actuators, it is pointed out that the attitude control efforts associated with cold gas micro thrusters are closely related to the mass moment inertia of the system. Therefore, the need to restrict the mass moments of inertia of the structural components is highlighted in the design of the load-bearing structural components when the attitude control performance is concerned. The optimal layout design of the space vehicle structure considering attitude control effort is, thus, reformulated as a topology optimization problem for minimum compliance under constraints on mass moments of inertia. Numerical techniques for the optimization problem are discussed. For the case of a single constraint on the mass moment of inertia about a given axis, a design variable updating scheme based on the Karush–Kuhn–Tucker optimality criteria is used to solve the minimization problem. For the problem with multiple constraints, mathematical programming approach is employed to seek the optimum. Numerical examples will be given to demonstrate the validity and applicability of the present problem statement.  相似文献   

12.
雷阳  封建湖 《应用数学和力学》2021,42(11):1150-1160
针对利用传统水平集法进行非线性结构拓扑优化计算过程复杂及计算效率低等问题,将参数化水平集方法引入材料非线性结构拓扑优化中。通过全局径向基函数插值初始水平集函数,建立了以插值系数为设计变量、结构的应变能最小为目标函数、材料用量为约束条件的材料非线性结构拓扑优化模型,利用有限元分析对材料非线性结构建立平衡方程,并用迭代法求解。同时,采用子结构法划分设计区域为若干个子区域,将全自由度平衡方程的求解分解为缩减的平衡方程和多个子结构内部位移的求解,减小了计算成本。算例表明,这种处理非线性关系的方法可以在保证数值稳定的同时提高计算效率,得到边界清晰、结构合理的拓扑优化构形。  相似文献   

13.
单元敏度的不准确估计是离散拓扑优化算法数值不稳定的原因之一,特别是添加材料时,传统的敏度计算公式给出的估计误差较大,甚至有时估计符号都是错误的.为了克服这一问题,通过对弹性平衡增量方程的摄动分析构造了新的增量敏度估计公式.这一新的公式无论是添加材料还是删除材料都能较准确地估计出目标函数增量,它可以看作是通过非局部单元刚度阵对传统敏度分析公式的修正.以此为基础构建了一种基于离散变量的拓扑优化算法,它可以从任意单元上添加或删除材料以使目标函数减小,同时为避免优化过程中重新划分网格,采用了单元软杀策略以小刚度材料模拟空单元.这一方法的主要优点是简单,不需要太多的数学计算,特别有利于工程实际的应用.  相似文献   

14.
This article considers the non-linear mixed 0–1 optimization problems that appear in topology optimization of load carrying structures. The main objective is to present a Generalized Benders’ Decomposition (GBD) method for solving single and multiple load minimum compliance (maximum stiffness) problems with discrete design variables to global optimality. We present the theoretical aspects of the method, including a proof of finite convergence and conditions for obtaining global optimal solutions. The method is also linked to, and compared with, an Outer-Approximation approach and a mixed 0–1 semi definite programming formulation of the considered problem. Several ways to accelerate the method are suggested and an implementation is described. Finally, a set of truss topology optimization problems are numerically solved to global optimality.  相似文献   

15.
In this research, a new layout optimization method is developed to consider high cycle fatigue constraints which occur due to variable amplitude mechanical loading. Although fatigue is a very important property in terms of safety when designing mechanical components, it has rarely been considered in topology optimization with the lack of concept and the difficulty of sensitivity analysis for fatigue constraints calculated from multiaxial cycle counting. For the topology optimization for fatigue constraint, we use transient stress analysis to extract effective stress cycles and Miner's cumulative damage rule to calculate total damage at every spatial element. Because the calculation of the exact sensitivities of a transient system is complex and time consuming for the topology optimization application, this research proposes to use the pseudo-sensitivities of fatigue constraints calculated by applying equivalent static load approach. In addition, as an aggregated fatigue constraint is very sensitive to the changes in stress value which causes some unstable convergences in optimization process, a new scaling approach of the aggregated fatigue damage constraint is developed. To validate the usefulness of the developed approaches, we solved some benchmark topology optimization problems and found that the present method provides physically appropriate layouts with stable optimization convergence.  相似文献   

16.
An evolutionary structural optimization (ESO) method for problems with stiffness constraints which is capable of performing simultaneous shape and topology optimization has been recently presented. This paper discusses various aspects of this method such as influences of the element removal ratio, the mesh size and the element type on optimal designs.  相似文献   

17.
We develop a unified and efficient adjoint design sensitivity analysis (DSA) method for weakly coupled thermo-elasticity problems. Design sensitivity expressions with respect to thermal conductivity and Young's modulus are derived. Besides the temperature and displacement adjoint equations, a coupled field adjoint equation is defined regarding the obtained adjoint displacement field as the adjoint load in the temperature field. Thus, the computing cost is significantly reduced compared to other sensitivity analysis methods. The developed DSA method is further extended to a topology design optimization method. For the topology design optimization, the design variables are parameterized using a bulk material density function. Numerical examples show that the DSA method developed is extremely efficient and the optimal topology varies significantly depending on the ratio of mechanical and thermal loadings.  相似文献   

18.
Ryszard Kutylowski 《PAMM》2007,7(1):4040017-4040018
In this paper for the topology optimization process the minimum compliance approach is used with FEM as very useful method for numerical realization of the problem. During the optimization process homogenized domain changes into discrete structure which means the final structure consists of the many optimal placed bars. The analysis of the deformed structure and the deformed finite elements is done from the displacement field point of view. It can be noticed, some of the finite elements reduce their size, some of them increase their size. It depends on the element status (void-empty, stressed or not stressed). The question arises: is the topology optimization process cause of the negative Poisson ratio for some parts of the structure? (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
An adaptive mesh method combined with the optimality criteria algorithm is applied to optimal shape design problems of fluid dynamics. The shape sensitivity analysis of the cost functional is derived. The optimization problem is solved by a simple but robust optimality criteria algorithm, and an automatic local adaptive mesh refinement method is proposed. The mesh adaptation, with an indicator based on the material distribution information, is itself shown as a shape or topology optimization problem. Taking advantages of this algorithm, the optimal shape design problem concerning fluid flow can be solved with higher resolution of the interface and a minimum of additional expense. Details on the optimization procedure are provided. Numerical results for two benchmark topology optimization problems are provided and compared with those obtained by other methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Stefan Riehl  Paul Steinmann 《PAMM》2015,15(1):575-576
This contribution is concerned with the design and evaluation of a staggered approach to computational shape and topology optimization. The main idea is to interrelate a classical boundary variation scheme based on the results from shape sensitivity analysis and an evolutionary-type element removal procedure that relies on the topological sensitivity as a rejection criterion. The key ingredient in this perspective is to consider an advancing front algorithm that is gradually removing, from the evolving boundary of the domain, a number of finite elements based on the evaluation of the topological sensitivity. This process is repeated until the minimum topological sensitivity is no longer encountered at the boundary but in the interior of the domain, such that a topological change is to be considered for the current design layout. However, we first aim to establish a more accurate approximation of the true optimal shape of the newly established (zig-zag representation) of the design boundary. This is achieved by the evaluation of the shape sensitivity and the accompanying boundary variations obtained by a basic descent algorithm. Only then, we create a hole in the interior of the domain by removing all cells that are adjacent to the nodal point that exhibits the minimum topological sensitivity and resume the advancing front algorithm to alter the newly established design boundary. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号