首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
It has been accepted by many researchers that modification of a model is often a necessity as a precursor to effective mesh generation. However, editing the geometry directly is often found to be cumbersome, tedious and expensive. In preparing a CAD model for numerical simulation, one of the critical issues involves the rectification of geometrical and topological errors. Though visually insignificant, these errors hinder the creation of a valid finite element model with a good mesh quality. Most current state-of-the-art works have been trying to heal geometric models directly. The novelty of the method proposed in this paper is that the mesh-healing process includes both model repair and mesh generation in one black box. The mesh-healing algorithm essentially simplifies the problems of the imperfect models and allows one to deal with simple polygons rather than complex surface representations. This paper addresses errors such as gaps, overlaps, T-joints and simple holes.  相似文献   

3.
We show that existing quadrilateral nonconforming finite elements of higher order exhibit a reduction in the order of approximation if the sequence of meshes is still shape-regular but consists no longer of asymptotically affine equivalent mesh cells. We study second order nonconforming finite elements as members of a new family of higher order approaches which prevent this order reduction. We present a new approach based on the enrichment of the original polynomial space on the reference element by means of nonconforming cell bubble functions which can be removed at the end by static condensation. Optimal estimates of the approximation and consistency error are shown in the case of a Poisson problem which imply an optimal order of the discretization error. Moreover, we discuss the known nonparametric approach to prevent the order reduction in the case of higher order elements, where the basis functions are defined as polynomials on the original mesh cell. Regarding the efficient treatment of the resulting linear discrete systems, we analyze numerically the convergence of the corresponding geometrical multigrid solvers which are based on the canonical full order grid transfer operators. Based on several benchmark configurations, for scalar Poisson problems as well as for the incompressible Navier-Stokes equations (representing the desired application field of these nonconforming finite elements), we demonstrate the high numerical accuracy, flexibility and efficiency of the discussed new approaches which have been successfully implemented in the FeatFlow software (www.featflow.de). The presented results show that the proposed FEM-multigrid combinations (together with discontinuous pressure approximations) appear to be very advantageous candidates for efficient simulation tools, particularly for incompressible flow problems.  相似文献   

4.
In this paper, we present a two-grid finite element method for the Allen-Cahn equation with the logarithmic potential. This method consists of two steps. In the first step, based on a fully implicit finite element method, the Allen-Cahn equation is solved on a coarse grid with mesh size H. In the second step, a linearized system whose nonlinear term is replaced by the value of the first step is solved on a fine grid with mesh size h. We give the energy stabilities of the traditional finite element method and the two-grid finite element method. The optimal convergence order of the two-grid finite element method in H1 norm is achieved when the mesh sizes satisfy h = O(H2). Numerical examples are given to demonstrate the validity of the proposed scheme. The results show that the two-grid method can save the CPU time while keeping the same convergence rate.  相似文献   

5.
This article presents some numerical examples for coupling the finite element method (FEM) and the boundary element method (BEM) as analyzed in [11]. This coupling procedure combines the advantages of boundary elements (problems in unbounded regions) and of finite elements (nonlinear problems with inhomogeneous data). In [28], experimental rates of convergence for the h version are presented, where the accuracy of the Galerkin approximation is achieved by refining the mesh. In this article we treat the h–p version, combining an increase of the degree of the piecewise polynomials with a certain mesh refinement. In our model examples, we obtain theoretically and numerically exponential convergence, which indicates a great efficiency in particular if singularities appear. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
A second order isoparametric finite element method (IPFEM) is proposed for elliptic interface problems. It yields better accuracy than some existing second-order methods, when the coefficients or the flux across the immersed curved interface is discontinuous. Based on an initial Cartesian mesh, a mesh optimization strategy is presented by employing curved boundary elements at the interface, and an incomplete quadratic finite element space is constructed on the optimized mesh. It turns out that the number of curved boundary elements is far less than that of the straight one, and the total degree of freedom is almost the same as the uniform Cartesian mesh. Numerical examples with simple and complicated geometrical interfaces demonstrate the efficiency of the proposed method.  相似文献   

7.
In this article, we propose a two‐level finite element method to analyze the approximate solutions of the stationary Navier‐Stokes equations based on a stabilized local projection. The local projection allows to circumvent the Babuska‐Brezzi condition by using equal‐order finite element pairs. The local projection can be used to stabilize high equal‐order finite element pairs. The proposed method combines the local projection stabilization method and the two‐level method under the assumption of the uniqueness condition. The two‐level method consists of solving a nonlinear equation on the coarse mesh and solving a linear equation on fine mesh. The nonlinear equation is solved by the one‐step Newtonian iteration method. In the rest of this article, we show the error analysis of the lowest equal‐order finite element pair and provide convergence rate of approximate solutions. Furthermore, the numerical illustrations coincide with the theoretical analysis expectations. From the view of computational time, the results show that the two‐level method is effective to solve the stationary Navier‐Stokes equations. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

8.
We present and analyze a robust preconditioned conjugate gradient method for the higher order Lagrangian finite element systems of a class of elliptic problems. An auxiliary linear element stiffness matrix is chosen to be the preconditioner for higher order finite elements. Then an algebraic multigrid method of linear finite element is applied for solving the preconditioner. The optimal condition number which is independent of the mesh size is obtained. Numerical experiments confirm the efficiency of the algorithm.  相似文献   

9.
The purpose of this work is to approximate numerically an elliptic partial differential equation posed on domains with small perforations (or inclusions). The approach is based on the fictitious domain method, and as the method's interest lies in the case in which the geometrical features are not resolved by the mesh, we propose a stabilized finite element method. The stabilization term is a simple, non‐consistent penalization that can be linked to the Barbosa‐Hughes approach. Stability and convergence are proved, and numerical results confirm the theory.  相似文献   

10.
In this paper we show that we can use a modified version of the h-p spectral element method proposed in [6,7,13,14] to solve elliptic problems with general boundary conditions to exponential accuracy on polygonal domains using nonconforming spectral element functions. A geometrical mesh is used in a neighbourhood of the corners. With this mesh we seek a solution which minimizes the sum of a weighted squared norm of the residuals in the partial differential equation and the squared norm of the residuals in the boundary conditions in fractional Sobolev spaces and enforce continuity by adding a term which measures the jump in the function and its derivatives at inter-element boundaries, in fractional Sobolev norms, to the functional being minimized. In the neighbourhood of the corners, modified polar coordinates are used and a global coordinate system elsewhere. A stability estimate is derived for the functional which is minimized based on the regularity estimate in [2]. We examine how to parallelize the method and show that the set of common boundary values consists of the values of the function at the corners of the polygonal domain. The method is faster than that proposed in [6,7,14] and the h-p finite element method and stronger error estimates are obtained.  相似文献   

11.
The computational modeling of failure mechanisms in solids due to fracture based on sharp crack discontinuities suffers in situations with complex crack topologies. This can be overcome by diffusive crack modeling, based on the introduction of a crack phase field as outlined in [1, 2]. Following these formulations, we outline a thermodynamically consistent framework for phase field models of crack propagation in elastic solids, develop incremental variational principles and, as an extension to [1, 2], consider their numerical implementations by an efficient h-adaptive finite element method. A key problem of the phase field formulation is the mesh density, which is required for the resolution of the diffusive crack patterns. To this end, we embed the computational framework into an adaptive mesh refinement strategy that resolves the fracture process zones. We construct a configurational-force-based framework for h-adaptive finite element discretizations of the gradient-type diffusive fracture model. We develop a staggered computational scheme for the solution of the coupled balances in physical and material space. The balance in the material space is then used to set up indicators for the quality of the finite element mesh and accounts for a subsequent h-type mesh refinement. The capability of the proposed method is demonstrated by means of a numerical example. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
以微蜂窝系统为背景,研究了以测试射线法和虚拟源射线跟踪法为代表的射线跟踪技术,并用这两种方法对射线跟踪进行建模,分析比较两种模型的优缺点.利用这两种模型对实际情况进行计算,精确地找出所有给定情况的传播路径并可视化;对多波干涉的振幅进行了统计学分析,对宽带多波干涉现象进行了数学建模,并分析了合成波的包络统计特性.  相似文献   

13.
Monika Weymuth  Stefan Sauter 《PAMM》2015,15(1):605-606
We develop a generalized finite element method for the discretization of elliptic partial differential equations in heterogeneous media. In [5] a semidiscrete method has been introduced to set up an adaptive local finite element basis (AL basis) on a coarse mesh with mesh size H which, typically, does not resolve the matrix of the media while the textbook finite element convergence rates are preserved. This method requires O(log(1/H)d+1) basis functions per mesh point where d denotes the spatial dimension of the computational domain. We present a fully discrete version of this method, where the AL basis is constructed by solving finite-dimensional localized problems, and which preserves the optimal convergence rates. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We present a new algorithm for generating layer-adapted meshes for the finite element solution of singularly perturbed problems based on mesh partial differential equations (MPDEs). The ultimate goal is to design meshes that are similar to the well-known Bakhvalov meshes, but can be used in more general settings: specifically two-dimensional problems for which the optimal mesh is not tensor-product in nature. Our focus is on the efficient implementation of these algorithms, and numerical verification of their properties in a variety of settings. The MPDE is a nonlinear problem, and the efficiency with which it can be solved depends adversely on the magnitude of the perturbation parameter and the number of mesh intervals. We resolve this by proposing a scheme based on $h$-refinement. We present fully working FEniCS codes [Alnaes et al., Arch. Numer. Softw., 3 (100) (2015)] that implement these methods, facilitating their extension to other problems and settings.  相似文献   

15.
解Stokes特征值问题的一种两水平稳定化有限元方法   总被引:2,自引:1,他引:1       下载免费PDF全文
基于局部Gauss积分,研究了解Stokes特征值问题的一种两水平稳定化有限元方法.该方法涉及在网格步长为H的粗网格上解一个Stokes特征值问题,在网格步长为h=O(H2)的细网格上解一个Stokes问题.这样使其能够仍旧保持最优的逼近精度,求得的解和一般的稳定化有限元解具有相同的收敛阶,即直接在网格步长为h的细网格上解一个Stokes特征值问题.因此,该方法能够节省大量的计算时间.数值试验验证了理论结果.  相似文献   

16.
1 引言 多孔介质中的核废料污染问题是环境保护领域的重要课题。对于不可压缩二维模型,它是地层中迁移型耦合抛物型方程组的初边值问题:  相似文献   

17.
The mesh transformation method is applied in a finite element approximation to a multi-well problem. It is proved that, compared with standard finite element methods, significantly higher convergence rate for the finite element approximations of multi-level microstructures can be obtained by combining the mesh transformation method with the periodic relaxation technique. Numerical examples are given to show the method can be efficiently implemented in computing multi-level microstructures.  相似文献   

18.
In this work, a meshless method, “natural neighbour radial point interpolation method” (NNRPIM), is applied to the one‐dimensional analysis of laminated beams, considering the theory of Timoshenko.The NNRPIM combines the mathematical concept of natural neighbours with the radial point interpolation. Voronoï diagrams allows to impose the nodal connectivity and the construction of a background mesh for integration purposes, via influence cells. The construction of the NNRPIM interpolation functions is shown, and, for this, it is used the multiquadratic radial basis function. The generated interpolation functions possess infinite continuity and the delta Kronecker property, which facilitates the enforcement of boundary conditions, since these can be directly imposed, as in the finite element method (FEM).In order to obtain the displacements and the deformation fields, it is considered the Timoshenko theory for beams under transverse efforts. Several numerical examples of isotropic beams and laminated beams are presented in order to demonstrate the convergence and accuracy of the proposed application. The results obtained are compared with analytical solutions available in the literature.  相似文献   

19.
A singularly perturbed one-dimensional convection-diffusion problem is solved numerically by the finite element method based on higher order polynomials. Numerical solutions are obtained using S-type meshes with special emphasis on meshes which are graded (based on a mesh generating function) in the fine mesh region. Error estimates in the ε-weighted energy norm are proved. We derive an 'optimal' mesh generating function in order to minimize the constant in the error estimate. Two layer-adapted meshes defined by a recursive formulae in the fine mesh region are also considered and a new technique for proving error estimates for these meshes is presented. The aim of the paper is to emphasize the importance of using optimal meshes for higher order finite element methods. Numerical experiments support all theoretical results.  相似文献   

20.
Many problems with underlying variational structure involve a coupling of volume with surface effects.A straight-forward approach in a finite element discretiza- tion is to make use of the surface triangulation that is naturally induced by the volume triangulation.In an adaptive method one wants to facilitate"matching"local mesh modifications,i.e.,local refinement and/or coarsening,of volume and surface mesh with standard tools such that the surface grid is always induced by the volume grid. We describe the concepts behind this approach for bisectional refinement and describe new tools incorporated in the finite element toolbox ALBERTA.We also present several important applications of the mesh coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号