首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of porosity, reinforcement ratio and specific weight on the thermal conductivity of a series of glass-reinforced plastics has been investigated. It is shown that, if the thickness, the weight characteristic (weight per square meter), and the number of layers of reinforcing fabric are known and the thermal conductivities of the components are constant, then the porosity of the glass-reinforced plastic can be predicted from its thermal conductivity. Data on the relation between the specific weight and the thermal conductivity of the glass-reinforced plastics investigated are presented.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 3, pp. 522–525, May–June 1971.  相似文献   

2.
An attempt is made to predict the creep and long-time strength of unidirectional reinforced plastics in compression in the direction of the reinforcement from the properties of the components. The reinforcement is assumed to be elastic, while the resin is described by a Boltzmann-Volterraintegral equation with fractional-exponential Rabotnov kernel. Experimentally obtained creep and long-time strength curves are presented for unidirectional reinforced plastics.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 5, pp. 830–835, September–October, 1970.  相似文献   

3.
In order to verify the theoretical formulas for calculating expansion coefficients the author has conducted tests on AG-4S unidirectional glass-reinforced plastics. The coefficients have been determined along and across the reinforcement at temperatures from 20 to 100° C. The experimental data are compared with the theoretical calculations. The anisotropy of thermal expansion, the scatter of the experimental data, and the temperature dependence of the expansion coefficients are discussed.Mekhanika Polimerov, Vol. 4, No. 3, pp. 568–570, 1968  相似文献   

4.
The dependence of the thermal conductivity of glass-reinforced plastics on porosity and component ratio is investigated. The possibility of determining the porosity, specific weight, and resin content of glass-reinforced plastics from their thermal conductivity is confirmed.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 3, pp. 487–491, May–June, 1969.  相似文献   

5.
A method of preparing fiberglass plastic articles using vacuum treatment in the curing process is considered. It has been established that the strength and deformation properties of fiberglass plastics so made improve greatly as the degree of vacuum is increased.Voroshilovgrad Engineering Institute. Translated from Mekhanika Polimerov No. 6, pp. 1128–1130, November–December, 1972.  相似文献   

6.
Studies performed on the optimization of composite structures by coworkers of the Institute of Polymers Mechanics of the Latvian Academy of Sciences in recent years are reviewed. The possibility of controlling the geometry and anisotropy of laminar composite structures will make it possible to design articles that best satisfy the requirements established for them. Conflicting requirements such as maximum bearing capacity, minimum weight and/or cost, prescribed thermal conductivity and thermal expansion, etc. usually exist for optimal design. This results in the multi-objective compromise optimization of structures. Numerical methods have been developed for solution of problems of multi-objective optimization of composite structures; parameters of the structure of the reinforcement and the geometry of the design are assigned as controlling parameters. Programs designed to run on personal computers have been compiled for multi-objective optimization of the properties of composite materials, plates, and shells. Solutions are obtained for both linear and nonlinear models. The programs make it possible to establish the Pareto compromise region and special multicriterial solutions. The problem of the multi-objective optimization of the elastic moduli of a spatially reinforced fiberglass with stochastic stiffness parameters has been solved.The region of permissible solutions and the Pareto region have been found for the elastic moduli. The dimensions of the scatter ellipse have been determined for a multidimensional Gaussian probability distribution where correlation between the composite's properties being optimized are accounted for. Two types of problems involving the optimization of a laminar rectangular composite plate are considered: the plate is considered elastic and anisotropic in the first case, and viscoelastic properties are accounted for in the second. The angle of reinforcement and the relative amount of fibers in the longitudinal direction are controlling parameters. The optimized properties are the critical stresses, thermal conductivity, and thermal expansion. The properties of a plate are determined by the properties of the components in the composite, eight of which are stochastic. The region of multi-objective compromise solutions is presented, and the parameters of the scatter ellipses of the properties are given.Translated from Mekhanika Kompozitnykh Materialov, Vol. 32, No. 3, pp. 363–376, May–June, 1996. Institute of Polymer Mechanics, Latvian Academy of Sciences, Riga.  相似文献   

7.
The relation between the interlaminar shear modulus G of oriented glass-reinforced plastics and their thermal conductivity in a direction orthogonal to the plane of reinforcement is investigated. It is shown that G can be predicted from the measured values of and the bending deformations from and the propagation velocity of ultrasound.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Makhanika Polimerov, No. 6, pp. 985–989, November–December, 1970.  相似文献   

8.
Conclusion The nonlinear dependence of the thermal deformations on the temperature for a wide class of layered carbon-reinforced plastics was experimentally demonstrated and the use of the thermal expansion function of the material instead of the corresponding characteristic: the thermal expansion coefficient, was substantiated in the present study. A method for determining the parameters of the thermal expansion functions was developed in consideration of their nonlinear dependence on the temperature and the numerical values were reported for layered carbon-reinforced plastics of two types with typical reinforcement schemes. In addition, the significant dependence of the thermal expansion functions on the geometry of the structure of the carbon-reinforced plastics was observed, and the major possibility of optimum planning of the structure of the material from considerations of geometric stability was demonstrated. The study of thermal deformations of reinforced plastics in consideration of their random character is promising as a result of the significant variance of the experimental data.Translated from Mekhanika Kompozitnykh Materialov, No. 1, pp. 32–36, January–February, 1990.  相似文献   

9.
The results of a study of the effect of the filler properties (thermal conductivity, density, particle shape and size, percentage content) on the thermal conductivity of the composite are presented; the factors responsible for the increase in the thermal conductivity of the polymer are indicated. Formulas are recommended for calculating the thermal conductivity of composites based on polyethlene and various fillers.Institute of Polymer Mechanics, Academy of Sciences of the LatvianSSR, Riga. Translated from Mekhanika Polimerov, No. 2, pp. 259–266, March–April, 1973.  相似文献   

10.
A method is proposed for calculating statically determinate beams made of reinforced plastics with allowance for the reinforcement ratio, the rheological properties of the resin and the reinforcement, the effect of shears, the type of reinforcement distribution, and the time factor. In constructing the corresponding laws of deformation it is assumed that both components obey the "standard solid" law.Mekhanika Polimerov, Vol. 2, No. 1, pp. 100–107, 1966  相似文献   

11.
Calculated and experimental relations between the modulus of elasticity and rigidity of unidirectional glass-reinforced plastics (GRP) and the capillarity coefficient of the hollow fiber reinforcement are presented. It is established that in calculating the flexural rigidity ratio of hollow- and solid-fiber GRP specimens of equal weight it is not permissible to neglect the mass and modulus of elasticity of the resin. The potentialities of hollow fibers as reinforcement for GRP shells subjected to external pressure are demonstrated.All-Union Scientific-Research Institute of Glass-Reinforced Plastics and Glass Fibers, Moscow Region. Translated from Mekhanika Polimerov, Vol. 4, No. 4, pp. 672–676, July–August, 1968.  相似文献   

12.
The effect of changes in the component ratio and porosity of glass-reinforced plastics on their strength and thermal conductivity is considered. A correlation is shown to exist between the bending strength and thermal conductivity of a glass laminate.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 4, pp. 749–751, July–August, 1969.  相似文献   

13.
The deformation and strength properties of unidirectionally reinforced carbon plastics have been experimentally investigated for uniaxial compression in the longitudinal and transverse directions and at 45° to the direction of reinforcement in both short-time and long-time tests. On the basis of the deformation properties of the components an attempt is made to describe the creep curve of the plastic in all three loading directions. The Mohr theory is used to predict the compressive strengths in the direction of reinforcement and at right angles to the reinforcement.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 1, pp. 29–35, January–February, 1973.  相似文献   

14.
Research on the mechanics of boron and carbon-reinforced plastics is briefly reviewed. The design and testing characteristics of these materials associated with the high degree of anisotropy of their elastic properties, as compared with those of glass-reinforced plastics, are discussed. Problems relating to testing at an angle to the direction of the reinforcement, the effect of misorientation and distortion of the fibers, and the consequences of the low shear strength are considered. Experimental confirmation has been obtained by testing unidirectional (1 : 0), orthogonally reinforced (1 : 1 and 2 : 1), and tridirectional (1 : 1 : 1 in the 0°, +60°, and –60° directions) boron and carbon-reinforced plastics.DeceasedInstitute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 4, pp. 676–685, July–August, 1971.  相似文献   

15.
The connection between the form of the strength surface of an anisotropic material and the procedure of experimentally determining the starting parameters is examined. Strength surfaces which were constructed for a flat sheet of constructional plywood in four octants of stress space and strength surfaces constructed in three planes of symmetry for two fiberglass plastics in the third octant are shown.S. M. Kirov Leningrad Wood Technology Academy. Translated from Mekhanika Polimerov, No. 2, pp. 269–278, March–April, 1976.  相似文献   

16.
The strength conditions of unidirectionally and orthogonally reinforced plastics subjected to uniaxial tension and compression in the direction of, and at an angle to, the reinforcement are developed, with consideration given to possible failure of the fibers, binder, or the bond between the fibers and binder. Proposed strength conditions take into account the structure of the material, the properties of its components, and stress concentration.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 6, pp. 988–995, November–December, 1975.  相似文献   

17.
It is proposed that the strengths in uniaxial and uniform biaxial compression in the direction of the axes of symmetry be used as parameters. The applicability of a strength criterion in the form of a fourth-degree polynomial to glass-reinforced plastics in biaxial compression in the plane of reinforcement and the transversal plane and to wood in triaxial compression has been experimentally confirmed.S. M. Kirov Leningrad Forest Engineering Academy. Translated from Mekhanika Polimerov, No. 6, pp. 991–996, November–December, 1973.  相似文献   

18.
Conclusions 1. Relationships have been obtained for determining nine elastic characteristics of orthotropic composite materials from the properties of the starting components and the assigned reinforcement scheme.2. Formulas are given for calculating the propagation velocity of three types of elastic flat waves for an arbitrary direction in one of the planes of elastic symmetry of a uniform orthotropic material.3. It has been shown that the velocity of the first arrival of a packet of ultrasonic vibrations which is recorded in an experiment is equal to the velocity of motion of the wave front in a limitless medium even for rather thin (5–10 mm) fiberglass-plastic specimens with unidirectional or cross-reinforced schemes.4. The dependences of elastic properties and rates of propagation of elastic vibrations on direction which are calculated theoretically from the properties of the starting components and the reinforcement scheme agree satisfactorily with experimental results.Translated from Mekhanika Polimerov, No. 3, pp. 531–536, May–June, 1978.  相似文献   

19.
Conclusion An economic method for the ST of carbon-fiber-reinforced plastics is proposed in this study. It is established as a result of investigations of the mechanical properties of carbon-fiber-reinforced plastics with different layups, which are subjected to ST in the range to 100 cycles, that in the majority of cases, the number and duration of thermal cycles has no effect on the stiffness and strength in tension, compression, bending, and shear. The effect of number of thermal cycles was manifested only on the stiffness in tension and bending and also on the tensile, compressive, and bending strengths of the material with the obliquely reinforced structure loaded in the direction of the diagonal. It is permissible to use the dynamic method to assess variations in the stiffness of a material subjected to ST.Translated from Mekhanika Kompozitnykh Materialov, Vol. 29, No. 1, pp. 66–76, January–February, 1993.  相似文献   

20.
The creep and long-time strength in interlaminar shear and the creep in compression in the direction of the reinforcement have been experimentally investigated for certain types of oriented glass-reinforced plastics. The specimens in the interlaminar creep tests took the form of short beams loaded in bending. The experimental creep data for shear and compression are well described by the hereditary theory with a kernel of the Abel type (shear) or in the form of a Rabotnov function (compression). If the stresses are constant in time, good agreement with experiment is also given by Findley's form of the aging theory. A deformation criterion of interlaminar shear strength is also obtained. The experimental curves and values of the creep and long-time strength constants are presented.Translated from Mekhanika Polimerov, No. 6, pp. 1003–1012, November–December, 1971.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号