首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We will be concerned with the mathematical modeling, numerical simulation, and shape optimization of micro fluidic biochips that are used for various biomedical applications. A particular feature is that the fluid flow in the fluidic network on top of the biochips is in- duced by surface acoustic waves generated by interdigital transducers. We are thus faced with a multiphysics problem that will be modeled by coupling the equations of piezoelectricity with the compressible Navier-Stokes equations. Moreover, the fluid flow exhibits a multiscale character that will be taken care of by a homogenization approach. We will discuss and analyze the mathematical models and deal with their numerical solution by space-time discretizations featuring appropriate finite element approximations with respect to hierarchies of simplicial triangulations of the underlying computational domains. Simulation results will be given for the propagation of the surface acoustic waves on top of the piezoelectric substrate and for the induced fluid flow in the microchannels of the fluidic network. The performance of the operational behavior of the biochips can be significantly improved by shape optimization. In particular, for such purposes we present a multilevel interior point method relying on a predictor-corrector strategy with an adaptive choice of the continuation steplength along the barrier path. As a specific example, we will consider the shape optimization of pressure driven capillary barriers between microchannels and reservoirs.  相似文献   

2.
In this paper,the authors discuss an inverse boundary problem for the axi- symmetric steady-state heat equation,which arises in monitoring the boundary corrosion for the blast-furnace.Measure temperature at some locations are used to identify the shape of the corrosion boundary. The numerical inversion is complicated and consuming since the wear-line varies during the process and the boundary in the heat problem is not fixed.The authors suggest a method that the unknown boundary can be represented by a given curve plus a small perturbation,then the equation can be solved with fixed boundary,and a lot of computing time will be saved. A method is given to solve the inverse problem by minimizing the sum of the squared residual at the measuring locations,in which the direct problems are solved by axi- symmetric fundamental solution method. The numerical results are in good agreement with test model data as well as industrial data,even in severe corrosion case.  相似文献   

3.
一维高精度离散GDQ方法   总被引:4,自引:0,他引:4  
郑华盛  赵宁  成娟 《计算数学》2004,26(3):293-302
GDQ method is a kind of high order accurate numerical methods developed several years ago, which have been successfully used to simulate the solution of smooth engineering problems such as structure mechanics and incompressible fluid dynamics. In this paper, extending the traditional GDQ method, we develop a new kind of discontinuous GDQ methods to solve compressible flow problems of which solutions may be discontinuous. In order to capture the local features of fluid flows, firstly, the computational domain is divided into many small pieces of subdomains. Then, in each small subdomain, the GDQ method is implementedand some kinds of numerical flux limitation conditions will be required to keep the correct flow direction. At the boundary interface between subdomains, we also use some kind of flux conditions according to the flow direction. The numerical method obtained by the above steps has the advantages of high order accuracy and easy to treat boundary conditions. It can simulate perfectly nonlinear waves such as shock, rarefaction wave and contact discontinuity. Finally, the numerical experiments on one dimensional Burgers equation and Euler equations are given.The numerical results verify the validation of the method.  相似文献   

4.
This article explores the characteristics of the average abundance function with mutation on the basis of the multi-player snowdrift evolutionary game model by analytical analysis and numerical simulation.The specific field of this research concerns the approximate expressions of the average abundance function with mutation on the basis of different levels of selection intensity and an analysis of the results of numerical simulation on the basis of the intuitive expression of the average abundance function.In addition,the biological background of this research lies in research on the effects of mutation,which is regarded as a biological concept and a disturbance to game behavior on the average abundance function.The mutation will make the evolutionary result get closer to the neutral drift state.It can be deduced that this affection is not only related to mutation,but also related to selection intensity and the gap between payoff and aspiration level.The main research findings contain four aspects.First,we have deduced the concrete expression of the expected payoff function.The asymptotic property and change trend of the expected payoff function has been basically obtained.In addition,the intuitive expression of the average abundance function with mutation has been obtained by taking the detailed balance condition as the point of penetration.It can be deduced that the effect of mutation is to make the average abundance function get close to 1/2.In addition,this affection is related to selection intensity and the gap.Secondly,the first-order Taylor expansion of the average abundance function has been deduced for when selection intensity is sufficiently small.The expression of the average abundance function with mutation can be simplified from a composite function to a linear function because of this Taylor expansion.This finding will play a significant role when analyzing the results of the numerical simulation.Thirdly,we have obtained the approximate expressions of the average abundance function corresponding to small and large selection intensity.The significance of the above approximate analysis lies in that we have grasped the basic characteristics of the effect of mutation.The effect is slight and can be neglected when mutation is very small.In addition,the effect begins to increase when mutation rises,and this effect will become more remarkable with the increase of selection intensity.Fourthly,we have explored the influences of parameters on the average abundance function with mutation through numerical simulation.In addition,the corresponding results have been explained on the basis of the expected payoff function.It can be deduced that the influences of parameters on the average abundance function with mutation will be slim when selection intensity is small.Moreover,the corresponding explanation is related to the first-order Taylor expansion.Furthermore,the influences will become notable when selection intensity is large.  相似文献   

5.
This paper deals with analytic and numerical dissipativity and exponential stability of singularly perturbed delay differential equations with any bounded state-independent lag. Sufficient conditions will be presented to ensure that any solution of the singularly perturbed delay differential equations (DDEs) with a bounded lag is dissipative and exponentially stable uniformly for sufficiently small ε > 0. We will study the numerical solution defined by the linear θ-method and one-leg method and show that they are dissipative and exponentially stable uniformly for sufficiently small ε > 0 if and only if θ = 1.  相似文献   

6.
In this paper, a new high accuracy numerical method for the thin-film problems of micron and submicron size ferromagnetic elements is proposed. For the computation of stray field, we use the finite element method(FEM) by introducing a semi-discrete artificial boundary condition [1, 2]. In our numerical experiments about the domain patterns and their movement, we can see that the results are accordant to that of experiments and other numerical methods. Our method are very convenient to deal with arbitrary shape of thin films such as a polygon with high accuracy.  相似文献   

7.
In this work, we propose an efficient numerical method for computing the electrostaticinteraction between two like-charged spherical particles which is governed by the nonlinearPoisson-Boltzmann equation. The nonlinear problem is solved by a monotone iterativemethod which leads to a sequence of linearized equations. A modified central finite differ-ence scheme is developed to solve the linearized equations on an exterior irregular domainusing a uniform Cartesian grid. With uniform grids, the method is simple, and as aconsequence, multigrid solvers can be employed to speed up the convergence. Numericalexperiments on cases with two isolated spheres and two spheres confined in a chargedcylindrical pore are carried out using the proposed method. Our numerical schemes arefound efficient and the numerical results are found in good agreement with the previouspublished results.  相似文献   

8.
A proper orthogonal decomposition (POD) technique is used to reduce the finite volume element (FVE) method for two-dimensional (2D) viscoelastic equations. A reduced-order fully discrete FVE algorithm with fewer degrees of freedom and sufficiently high accuracy based on POD method is established. The error estimates of the reduced- order fully discrete FVE solutions and the implementation for solving the reduced-order fully discrete FVE algorithm are provided. Some numerical examples are used to illus- trate that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the reduced-order fully discrete FVE algorithm is one of the most effective numerical methods by comparing with corresponding numerical results of finite element formulation and finite difference scheme and that the reduced-order fully discrete FVE algorithm based on POD method is feasible and efficient for solving 2D viscoelastic equations.  相似文献   

9.
In this study, we present a conservative local discontinuous Galerkin(LDG) method for numerically solving the two-dimensional nonlinear Schrdinger(NLS) equation. The NLS equation is rewritten as a firstorder system and then we construct the LDG formulation with appropriate numerical flux. The mass and energy conserving laws for the semi-discrete formulation can be proved based on different choices of numerical fluxes such as the central, alternative and upwind-based flux. We will propose two kinds of time discretization methods for the semi-discrete formulation. One is based on Crank-Nicolson method and can be proved to preserve the discrete mass and energy conservation. The other one is Krylov implicit integration factor(IIF) method which demands much less computational effort. Various numerical experiments are presented to demonstrate the conservation law of mass and energy, the optimal rates of convergence, and the blow-up phenomenon.  相似文献   

10.
In this paper, we present the theory and numerical implementation for a 2-D thermal inhomogeneity through the dynamical probe method. The main idea of the dynamical probe method is to construct an indicator function associated with some probe such that when the probe touch the boundary of the inclusion the indicator function will blow up. From this property, we can get the shape of the inclusion. We will give the numerical reconstruction algorithm to identify the inclusion from the simulated Neumann-to-Dirichlet map.  相似文献   

11.
In this paper, a robust and accurate high-resolution finite-volume scheme is presented which employs flux-vector splitting (FVS) as the building block for solution of shallow water equations in boundary-fitted curvilinear coordinates. Eddy viscosity approach is used to accommodate shear stresses due to turbulence. Splitting of the convective terms is achieved via flux Jacobians whereas Liou–Steffen Splitting (LSS) technique, but in transformed coordinates, is used to split pressure terms. Limited flux gradients are also used to increase the computational accuracy of evaluation of interface fluxes and decrease the excessive numerical dissipation associated with FVS. This will completely remove spurious oscillations in high-gradient regions without introducing too much numerical dissipations. The method is tested for some classic simulations including hydraulic jump, 1D dam break and 2D dam break problems. The results show very satisfactory agreement with experimental data, analytical solutions and other numerical results.  相似文献   

12.
This work deals with the modelling and simulation of a degassing process mainly used for extruders in polymer industry. The numerical simulations are done with finite-volume method using OpenFOAM for a 2D single screw extruder. The material parameters have been all chosen for a PDMS-Pentane polymer mixture so that the results could be compared with the available experiments already performed for this mixture [1]. In addition to experiments, the numerical results will be compared with an analytical solution derived from Danckwerts' model [2][3]. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
韩国强 《计算数学》1994,16(4):418-431
非线性积分方程迭代配置法的渐近展开及其外推韩国强(华南理工大学计算机工程与科学系)ASYMPTOTICERROREXMNSIONSANDEXTRAPOLATIONFORTHEITERATEDCOLLOCATIONMETHODSOFNONLINEARI...  相似文献   

14.
In this paper, a numerical solution of the (2+1)-dimensional coupled Burgers system is studied by using the Homotopy Perturbation Method (HPM). For this purpose, the available analytical solutions obtained by tanh method will be compared to show the validity and accuracy of the proposed numerical algorithm. The results approve the convergence and accuracy of the Homotopy Perturbation Method for numerically analyzed (2+1) coupled Burgers system.  相似文献   

15.
IntroductionThe prevalence of genital herpes infection (caused by HSV-2) in the United States is approximately 22% II]. In developing nations, the infection rate is between 40%A10% I2' 3]. Althoughthere is currently no cure for genital herpes, drug treatment with agents such as acyclovir isknown to significantly relieve symptoms and reduce viral shedding['1. Most cases of HSV-2infections remain untreated in developing nations, and even in the USA only 5%--10% aretreated[4]. Whilst incre…  相似文献   

16.
On projected Runge-Kutta methods for differential-algebraic equations   总被引:4,自引:0,他引:4  
Ascher and Petzold recently introducedprojected Runge-Kutta methods for the numerical solution of semi-explicit differential-algebraic systems of index 2. Here it is shown that such a method can be regarded as the limiting case of a standard application of a Runge-Kutta method with a very small implicit Euler step added to it. This interpretation allows a direct derivation of the order conditions and of superconvergence results for the projected methods from known results for standard Runge-Kutta methods for index-2 differential-algebraic systems, and an extension to linearly implicit differential-algebraic systems.  相似文献   

17.
In this work, we shall compare a symbolic integration with a numerical integration of a test problem arising in satellite dynamics. An equatorial satellite with the J2 effect in BF variables will be taken. As symbolic integrator, we shall take er ewton©, a Maple V package implemented by the authors. Classical and contrasted numerical methods will be chosen to perform the numerical integration. We pointed out the advantages of symbolic integration as an efficient method for making very long time predictions on the orbit of the satellite.  相似文献   

18.
In this paper the extension of the Legendre least-squares spectral element formulation to Chebyshev polynomials will be explained. The new method will be applied to the incompressible Navier-Stokes equations and numerical results, obtained for the lid-driven cavity flow at Reynolds numbers varying between 1000 and 7500, will be compared with the commonly used benchmark results. The new results reveal that the least-squares spectral element formulations based on the Legendre and Chebyshev Gauss-Lobatto Lagrange interpolating polynomials are equally accurate.  相似文献   

19.
《Applied Numerical Mathematics》2006,56(10-11):1356-1369
Variational methods for boundary integral equations deal with the weak formulations of boundary integral equations. Their numerical discretizations are known as the boundary element methods. This paper gives an overview of the method from both theoretical and numerical point of view. It summarizes the main results obtained by the author and his collaborators over the last 30 years. Fundamental theory and various applications will be illustrated through simple examples. Some numerical experiments in elasticity as well as in fluid mechanics will be included to demonstrate the efficiency of the methods.  相似文献   

20.
In general, we will use the numerical differentiation when dealing with the differential equations. Thus the differential equations can be transformed into algebraic equations and then we can get the numerical solutions. But as we all have known, the numerical differentiation process is very sensitive to even a small level of errors. In contrast it is expected that on average the numerical integration process is much less sensitive to errors. In this paper, based on the Sinc method we provide a new method using Sinc method incorporated with the double exponential transformation based on the interpolation of the highest derivatives (SIHD) for the differential equations. The error in the approximation of the solution is shown to converge at an exponential rate. The numerical results show that compared with the exiting results, our method is of high accuracy, of good convergence with little computational efforts. It is easy to treat nonhomogeneous mixed boundary condition for our method, which is unlike the traditional Sinc method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号