首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
An edge e of a k-connected graph G is said to be a removable edge if G?e is still k-connected. A k-connected graph G is said to be a quasi (k+1)-connected if G has no nontrivial k-separator. The existence of removable edges of 3-connected and 4-connected graphs and some properties of quasi k-connected graphs have been investigated [D.A. Holton, B. Jackson, A. Saito, N.C. Wormale, Removable edges in 3-connected graphs, J. Graph Theory 14(4) (1990) 465-473; H. Jiang, J. Su, Minimum degree of minimally quasi (k+1)-connected graphs, J. Math. Study 35 (2002) 187-193; T. Politof, A. Satyanarayana, Minors of quasi 4-connected graphs, Discrete Math. 126 (1994) 245-256; T. Politof, A. Satyanarayana, The structure of quasi 4-connected graphs, Discrete Math. 161 (1996) 217-228; J. Su, The number of removable edges in 3-connected graphs, J. Combin. Theory Ser. B 75(1) (1999) 74-87; J. Yin, Removable edges and constructions of 4-connected graphs, J. Systems Sci. Math. Sci. 19(4) (1999) 434-438]. In this paper, we first investigate the relation between quasi connectivity and removable edges. Based on the relation, the existence of removable edges in k-connected graphs (k?5) is investigated. It is proved that a 5-connected graph has no removable edge if and only if it is isomorphic to K6. For a k-connected graph G such that end vertices of any edge of G have at most k-3 common adjacent vertices, it is also proved that G has a removable edge. Consequently, a recursive construction method of 5-connected graphs is established, that is, any 5-connected graph can be obtained from K6 by a number of θ+-operations. We conjecture that, if k is even, a k-connected graph G without removable edge is isomorphic to either Kk+1 or the graph Hk/2+1 obtained from Kk+2 by removing k/2+1 disjoint edges, and, if k is odd, G is isomorphic to Kk+1.  相似文献   

2.
Thomassen conjectured that any longest cycle of a 3-connected graph has a chord. In this paper, we will show that the conjecture is true for a planar graph if it is cubic or δ ? 4.  相似文献   

3.
Removable Edges in Longest Cycles of 4-Connected Graphs   总被引:3,自引:0,他引:3  
Let G be a 4-connected graph. For an edge e of G, we do the following operations on G: first, delete the edge e from G, resulting the graph Ge; second, for all vertices x of degree 3 in Ge, delete x from Ge and then completely connect the 3 neighbors of x by a triangle. If multiple edges occur, we use single edges to replace them. The final resultant graph is denoted by Ge. If Ge is 4-connected, then e is called a removable edge of G. In this paper we obtain some results on removable edges in a longest cycle of a 4-connected graph G. We also show that for a 4-connected graph G of minimum degree at least 5 or girth at least 4, any edge of G is removable or contractible.Acknowledgment. The authors are greatly indebted to a referee for his valuable suggestions and comments, which are very helpful to improve the proof of our main result Lemma 3.3.Research supported by National Science Foundation of China AMS subject classification (2000): 05C40, 05C38, 05C75Final version received: March 10, 2004  相似文献   

4.
Let G be a 5-connected graph. For an edge e of G, we do the following operations on G: first, delete the edge e from G, resulting the graph G?e; second, for each vertex x of degree 4 in G?e, delete x from G?e and then completely connect the 4 neighbors of x by K 4. If multiple edges occur, we use single edge to replace them. The final resultant graph is denoted by G ? e. If G ? e is still 5-connected, then e is called a removable edge of G. In this paper, we investigate the distribution of removable edges in a cycle of a 5-connected graph. And we give examples to show some of our results are best possible in some sense.  相似文献   

5.
An edge e of a 3-connected graph G is said to be removable if G - e is a subdivision of a 3-connected graph. If e is not removable, then e is said to be nonremovable. In this paper, we study the distribution of removable edges in 3-connected graphs and prove that a 3-connected graph of order n ≥ 5 has at most [(4 n — 5)/3] nonremovable edges.  相似文献   

6.
Let G be a graph withE(G) $#x2260;ø. The line graph of G, written L(G) hasE(G) as its vertex set, where two vertices are adjacent in L(G) if and only if the corresponding edges are adjacent inG. Thomassen conjectured that all 4-connected line graphs are hamiltonian [2]. We show that this conjecture holds for planar graphs.  相似文献   

7.
An edge e of a k-connected graph G is said to be a removable edge if Ge is still k-connected, where Ge denotes the graph obtained from G by deleting e to get Ge, and for any end vertex of e with degree k − 1 in Ge, say x, delete x, and then add edges between any pair of non-adjacent vertices in N Ge (x). The existence of removable edges of k-connected graphs and some properties of 3-connected graphs and 4-connected graphs have been investigated. In the present paper, we investigate some properties of k-connected graphs and study the distribution of removable edges on a cycle in a k-connected graph (k ≥ 4).  相似文献   

8.
An edge e of a k-connected graph G is said to be k-removable if Ge is still k-connected. A subgraph H of a k-connected graph is said to be k-contractible if its contraction results still in a k-connected graph. A k-connected graph with neither removable edge nor contractible subgraph is said to be minor minimally k-connected. In this paper, we show that there is a contractible subgraph in a 5-connected graph which contains a vertex who is not contained in any triangles. Hence, every vertex of minor minimally 5-connected graph is contained in some triangle.  相似文献   

9.
Xiaoyun Lu 《Discrete Mathematics》2011,311(23-24):2711-2715
A well-known conjecture of Barnette states that every 3-connected cubic bipartite planar graph has a Hamiltonian cycle, which is equivalent to the statement that every 3-connected even plane triangulation admits a 2-tree coloring, meaning that the vertices of the graph have a 2-coloring such that each color class induces a tree. In this paper we present a new approach to Barnette’s conjecture by using 2-tree coloring.A Barnette triangulation is a 3-connected even plane triangulation, and a B-graph is a smallest Barnette triangulation without a 2-tree coloring. A configuration is reducible if it cannot be a configuration of a B-graph. We prove that certain configurations are reducible. We also define extendable, non-extendable and compatible graphs; and discuss their connection with Barnette’s conjecture.  相似文献   

10.
In 1966, Gallai conjectured that all the longest paths of a connected graph have a common vertex. Zamfirescu conjectured that the smallest counterexample to Gallai’s conjecture is a graph on 12 vertices. We prove that Gallai’s conjecture is true for every connected graph G with α′(G) ≤ 5, which implies that Zamfirescu’s conjecture is true.  相似文献   

11.
We combine two well-known results by Mader and Thomassen, respectively. Namely, we prove that for any k-connected graph G (k≥4), there is an induced cycle C such that GV(C) is (k−3)-connected and GE(C) is (k−2)-connected. Both “(k−3)-connected” and “(k−2)-connected” are best possible in a sense.  相似文献   

12.
A graph with n vertices is said to have a small cycle cover provided its edges can be covered with at most (2n ? 1)/3 cycles. Bondy [2] has conjectured that every 2-connected graph has a small cycle cover. In [3] Lai and Lai prove Bondy’s conjecture for plane triangulations. In [1] the author extends this result to all planar 3-connected graphs, by proving that they can be covered by at most (n + 1)/2 cycles. In this paper we show that Bondy’s conjecture holds for all planar 2-connected graphs. We also show that all planar 2-edge-connected graphs can be covered by at most (3n ? 3)/4 cycles and we show an infinite family of graphs for which this bound is attained.  相似文献   

13.
For a graph G, let σk(G) be the minimum degree sum of an independent set of k vertices. Ore showed that if G is a graph of order n?3 with σ2(G)?n then G is hamiltonian. Let κ(G) be the connectivity of a graph G. Bauer, Broersma, Li and Veldman proved that if G is a 2-connected graph on n vertices with σ3(G)?n+κ(G), then G is hamiltonian. On the other hand, Bondy showed that if G is a 2-connected graph on n vertices with σ3(G)?n+2, then each longest cycle of G is a dominating cycle. In this paper, we prove that if G is a 3-connected graph on n vertices with σ4(G)?n+κ(G)+3, then G contains a longest cycle which is a dominating cycle.  相似文献   

14.
A well-known conjecture of Scott Smith is that any two distinct longest cycles of a k-connected graph must meet in at least k vertices when k≥2. We provide a dual version of this conjecture for two distinct largest bonds in a graph. This dual conjecture is established for k?6.  相似文献   

15.
C. Thomassen proposed a conjecture: Let G be a k‐connected graph with the stability number α ≥ k, then G has a cycle C containing k independent vertices and all their neighbors. In this paper, we will obtain the following result: Let G be a k‐connected graph with stability number α = k + 3 and C any longest cycle of G, then C contains k independent vertices and all their neighbors. This solves Thomassen's conjecture for the case α = k + 3. © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 168–180, 2001  相似文献   

16.
It is shown that if the edges of a 2-connected graph G are partitioned into two classes so that every vertex is incident with edges from both classes, then G has an alternating cycle. The connectivity assumption can be dropped if both subgraphs resulting from the partition are regular, or have only vertices of odd degree.  相似文献   

17.
The following result is being proved. Theorem: Let e be an arbitrary line of the 2-connected, 3-regular, planar graph G such that e does not belong to any cut set of size 2. The G contains an even cycle for which e is a chord.  相似文献   

18.
Let G be a 4-regular planar graph and suppose that G has a cycle decomposition S (i.e., each edge of G is in exactly on cycle of the decomposition) with every pair of adjacent edges on a face always in different cycles of S. Such a graph G arises as a superposition of simple closed curves in the plane with tangencies disallowed. Grötzsch-Sachs-Koester's conjecture states that if the cycles of G can be partitioned into four classes, such that two cycles in the same classes are disjoint, G is vertex 3-colorable. In this note, the conjecture is disproved.  相似文献   

19.
In 1956, W.T. Tutte proved that a 4-connected planar graph is hamiltonian. Moreover, in 1997, D.P. Sanders extended this to the result that a 4-connected planar graph contains a hamiltonian cycle through any two of its edges. We prove that a planar graph G has a cycle containing a given subset X of its vertex set and any two prescribed edges of the subgraph of G induced by X if |X|≥3 and if X is 4-connected in G. If X=V(G) then Sanders’ result follows.  相似文献   

20.
The edge degree d(e) of the edge e=uv is defined as the number of neighbours of e, i.e., |N(u)∪N(v)|-2. Two edges are called remote if they are disjoint and there is no edge joining them. In this article, we prove that in a 2-connected graph G, if d(e1)+d(e2)>|V(G)|-4 for any remote edges e1,e2, then all longest cycles C in G are dominating, i.e., G-V(C) is edgeless. This lower bound is best possible.As a corollary, it holds that if G is a 2-connected triangle-free graph with σ2(G)>|V(G)|/2, then all longest cycles are dominating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号