首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Let R be a commutative ring with unit, and let E be an R-module. We say the functor of R-modules E, defined by E(B) = E ? R B, is a quasi-coherent R-module, and its dual E* is an R-module scheme. Both types of R-module functors are essential for the development of the theory of the linear representations of an affine R-group. We prove that a quasi-coherent R-module E is an R-module scheme if and only if E is a projective R-module of finite type, and, as a consequence, we also characterize finitely generated projective R-modules.  相似文献   

2.
In this paper, we perform global stability analysis of a multi‐group SEIR epidemic model in which we can consider the heterogeneity of host population and the effects of latency and nonlinear incidence rates. For a simpler version that assumes an identical natural death rate for all groups, and with a gamma distribution for the latency, the basic reproduction number is defined by the theory of the next generation operator and proved to be a sharp threshold determining whether or not disease spread. Under certain assumptions, the disease‐free equilibrium is globally asymptotically stable if R0≤1 and there exists a unique endemic equilibrium which is globally asymptotically stable if R0>1. The proofs of global stability of equilibria exploit a matrix‐theoretic method using Perron eigenvetor, a graph‐theoretic method based on Kirchhoff's matrix tree theorem and Lyapunov functionals. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
In this article we present a fourth‐order finite difference scheme, for a system of two‐dimensional, second‐order, nonlinear elliptic partial differential equations with mixed spatial derivative terms, using 13‐point stencils with a uniform mesh size h on a square region R subject to Dirichlet boundary conditions. The scheme of order h4 is derived using the local solution of the system on a single stencil. The resulting system of algebraic equations can be solved by iterative methods. The difference scheme can be easily modified to obtain formulae for grid points near the boundary. Computational results are given to demonstrate the performance of the scheme on some problems including Navier‐Stokes equations. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 43–53, 2001  相似文献   

4.
Shane P. Redmond 《代数通讯》2013,41(7):2389-2401
For a commutative ring R with identity, the zero-divisor graph, Γ(R), is the graph with vertices the nonzero zero-divisors of R and edges between distinct vertices x and y whenever xy = 0. This article gives a proof that the radius of Γ(R) is 0, 1, or 2 if R is Noetherian. The center union {0} is shown to be a union of annihilator ideals if R is Artinian. The diameter of Γ(R) can be determined once the center is identified. If R is finite, then the median is shown to be a subset of the center. A dominating set of Γ(R) is constructed using elements of the center when R is Artinian. It is shown that for a finite ring R ? ?2 × F for some finite field F, the domination number of Γ(R) is equal to the number of distinct maximal ideals of R. Other results on the structure of Γ(R) are also presented.  相似文献   

5.
Semiclean Rings     
《代数通讯》2013,41(11):5609-5625
Abstract

The notion of semiclean elements in a ring is defined. Every clean element is semiclean. A ring R is said to be semiclean if every element in R is semiclean. The group ring Z p G with G a cyclic group of order 3 is proved to be semiclean. The n × n matrix ring M n (R) over a semiclean ring is semiclean. If R is a torsion free semiclean ring in which every element of R can be written as a sum of periodic and ±1, then R is clean. Every element in a semiclean ring R with 2 invertible is a sum of no more than 3 units.  相似文献   

6.
A. Sinan Çevik 《代数通讯》2013,41(8):2583-2587
Let R be a ring and M(R) the set consisting of zero and primitive idempotents of R. We study the rings R for which M(R) is multiplicative. It is proved that if R has a complete finite set of primitive orthogonal idempotents, then R is a finite direct product of connected rings precisely when M(R) is multiplicative. We prove that if R is a (von Neumann) regular ring with M(R) multiplicative, then every primitive idempotent in R is central. It is also shown that this does not happen even in semihereditary and semiregular rings. Let R be an arbitrary ring with M(R) multiplicative and e ∈ R be a primitive idempotent, then for every unit u ∈ R, it is proved that eue is a unit in eRe. We also prove that if M(R) is multiplicative, then two primitive idempotents e and f in R are conjugates, i.e., f = ueu ?1 for some u ∈ U(R), if and only if ef ≠ 0.  相似文献   

7.
Wolfgang Rump 《代数通讯》2013,41(9):3283-3299
ABSTRACT

In this article, we study finitely generated reflexive modules over coherent GCD-domains and finitely generated projective modules over polynomial rings. In particular, we give a sufficient condition for a finitely generated reflexive module over a coherent GCD-domain to be a free module. By use of this result, we prove that every finitely generated projective R + [X]-module can be extended from R if R is a commutative ring with gl.dim(R) ≤ 2.  相似文献   

8.
《代数通讯》2013,41(9):3091-3119
ABSTRACT

A (unital) extension R ? T of (commutative) rings is said to have FIP (respectively be a minimal extension) if there are only finitely many (respectively no) rings S such that R ? S ? T. Transfer results for the FIP property for extensions of Nagata rings are obtained, including the following fact: if R ? T is a (module-) finite minimal ring extension, then R(X)?T(X) also is a (module-) finite minimal ring extension. The assertion obtained by replacing “is a (module-) finite minimal ring extension” with “has FIP” is valid if R is an infinite field but invalid if R is a finite field. A generalization of the Primitive Element Theorem is obtained by characterizing, for any field (more generally, any artinian reduced ring) R, the ring extensions R ? T which have FIP; and, if R is any field K, by describing all possible structures of the (necessarily minimal) ring extensions appearing in any maximal chain of intermediate rings between K and any such T. Transfer of the FIP and “minimal extension” properties is given for certain pullbacks, with applications to constructions such as CPI-extensions. Various sufficient conditions are given for a ring extension of the form R ? R[u], with u a nilpotent element, to have or not have FIP. One such result states that if R is a residually finite integral domain that is not a field and u is a nilpotent element belonging to some ring extension of R, then R ? R[u] has FIP if and only if (0 : u) ≠ 0. The rings R having only finitely many unital subrings are studied, with complete characterizations being obtained in the following cases: char(R)>0; R an integral domain of characteristic 0; and R a (module-)finite extension of ? which is not an integral domain. In particular, a ring of the last-mentioned type has only finitely many unital subrings if and only if (?:R)≠0. Some results are also given for the residually FIP property.  相似文献   

9.
Juncheol Han 《代数通讯》2013,41(9):3551-3557
Let R be a ring with identity 1, I(R) be the set of all nonunit idempotents in R, and M(R) be the set of all primitive idempotents and 0 of R. We say that I(R) is additive if for all e, f ∈ I(R) (e ≠ f), e + f ∈ I(R), and M(R) is additive in I(R) if for all e, f ∈ M(R)(e ≠ f), e + f ∈ I(R). In this article, the following points are shown: (1) I(R) is additive if and only if I(R) is multiplicative and the characteristic of R is 2; M(R) is additive in I(R) if and only if M(R) is orthogonal. If 0 ≠ ef ∈ I(R) for some e ∈ M(R) and f ∈ I(R), then ef ∈ M(R), (2) If R has a complete set of primitive idempotents, then R is a finite product of connected rings if and only if I(R) is multiplicative if and only if M(R) is additive in I(R).  相似文献   

10.
Ahmed Ayache 《代数通讯》2013,41(7):2467-2483
Let R, S be two rings. We say that R is a valuation subring of S (R is a VD in S, for short) if R is a proper subring of S and whenever x ∈ S, we have x ∈ R or x ?1 ∈ R. We denote by Nu(R) the set of all nonunit elements of a ring R. We say that R is a pseudovaluation subring of S (R is a PV in S, for short) if R is a proper subring of S and x ?1 a ∈ R, for each x ∈ S?R, a ∈ Nu(R). This article deals with the study of valuation subrings and pseudovaluation subrings of a ring; interactions between the two notions are also given. Let R be a PV in S; the Krull dimension of the polynomial ring on n indetrminates over R is also computed.  相似文献   

11.
We compute the Bass series for elementary type Witt rings. For a Witt ring R with I 3 R = 0, we show the decomposability of R can be detected from the Bass series.  相似文献   

12.
AA-Rings     
《代数通讯》2013,41(10):3853-3860
Abstract

Let R be a ring with identity such that R +, the additive group of R, is torsion-free of finite rank (tffr). The ring R is called an E-ring if End(R +) = {x ? ax : a ∈ R} and is called an A-ring if Aut(R +) = {x ? ux : u ∈ U(R)}, where U(R) is the group of units of R. While E-rings have been studied for decades, the notion of A-rings was introduced only recently. We now introduce a weaker notion. The ring R, 1 ∈ R, is called an AA-ring if for each α ∈ Aut(R +) there is some natural number n such that α n  ∈ {x ? ux : u ∈ U(R)}. We will find all tffr AA-rings with nilradical N(R) ≠ {0} and show that all tffr AA-rings with N(R) = {0} are actually E-rings. As a consequence of our results on AA-rings, we are able to prove that all tffr A-rings are indeed E-rings.  相似文献   

13.
Ayman Badawi 《代数通讯》2013,41(1):108-121
Let R be a commutative ring with nonzero identity, Z(R) be its set of zero-divisors, and if a ∈ Z(R), then let ann R (a) = {d ∈ R | da = 0}. The annihilator graph of R is the (undirected) graph AG(R) with vertices Z(R)* = Z(R)?{0}, and two distinct vertices x and y are adjacent if and only if ann R (xy) ≠ ann R (x) ∪ ann R (y). It follows that each edge (path) of the zero-divisor graph Γ(R) is an edge (path) of AG(R). In this article, we study the graph AG(R). For a commutative ring R, we show that AG(R) is connected with diameter at most two and with girth at most four provided that AG(R) has a cycle. Among other things, for a reduced commutative ring R, we show that the annihilator graph AG(R) is identical to the zero-divisor graph Γ(R) if and only if R has exactly two minimal prime ideals.  相似文献   

14.
Wolfgang Rump 《代数通讯》2013,41(8):2808-2824
Let R be a complete discrete valuation ring with quotient field K, and let Λ be an R-order in a semisimple K-algebra. For an indecomposable Λ-lattice E, a sublattice Bi E satisfying Rad E ? Bi E is defined, and it is shown that the middle term H of an almost split sequence τE ? H ? E can be obtained by an amalgamation of E/Bi E with E′/τE for a suitable overlattice E′ of τE. The method is bound to dim R = 1.  相似文献   

15.
Let R be a reduced commutative ring with 1 ≠ 0. Let R E be the set of equivalence classes for the equivalence relation on R given by x ~ y if and only if ann R (x) = ann R (y). Then R E is a (meet) semilattice with respect to the order [x] ≤ [y] if and only if ann R (y) ? ann R (x). In this paper, we investigate when R E is a lattice and relate this to when R is weakly complemented or satisfies the annihilator condition. We also consider when R is a (meet) semilattice with respect to the Abian order defined by x ≤ y if and only if xy = x 2.  相似文献   

16.
Dave Benson  Leonard Evens 《代数通讯》2013,41(10):3447-3451

In this article, we call a ring R right generalized semiregular if for any a ∈ R there exist two left ideals P, L of R such that lr(a) = PL, where P ? Ra and Ra ∩ L is small in R. The class of generalized semiregular rings contains all semiregular rings and all AP-injective rings. Some properties of these rings are studied and some results about semiregular rings and AP-injective rings are extended. In addition, we call a ring R semi-π-regular if for any a ∈ R there exist a positive integer n and e 2 = e ∈ a n R such that (1 ? e)a n  ∈ J(R), the Jacobson radical of R. It is shown that a ring R is semi-π-regular if and only if R/J(R) is π-regular and idempotents can be lifted modulo J(R).  相似文献   

17.
Let A be a commutative ring with nonzero identity, 1 ≤ n < ∞ be an integer, and R = A × A × … ×A (n times). The total dot product graph of R is the (undirected) graph TD(R) with vertices R* = R?{(0, 0,…, 0)}, and two distinct vertices x and y are adjacent if and only if x·y = 0 ∈ A (where x·y denote the normal dot product of x and y). Let Z(R) denote the set of all zero-divisors of R. Then the zero-divisor dot product graph of R is the induced subgraph ZD(R) of TD(R) with vertices Z(R)* = Z(R)?{(0, 0,…, 0)}. It follows that each edge (path) of the classical zero-divisor graph Γ(R) is an edge (path) of ZD(R). We observe that if n = 1, then TD(R) is a disconnected graph and ZD(R) is identical to the well-known zero-divisor graph of R in the sense of Beck–Anderson–Livingston, and hence it is connected. In this paper, we study both graphs TD(R) and ZD(R). For a commutative ring A and n ≥ 3, we show that TD(R) (ZD(R)) is connected with diameter two (at most three) and with girth three. Among other things, for n ≥ 2, we show that ZD(R) is identical to the zero-divisor graph of R if and only if either n = 2 and A is an integral domain or R is ring-isomorphic to ?2 × ?2 × ?2.  相似文献   

18.
We give a constructive treatment of the theory of Noetherian rings. We avoid the usual restriction to coherent rings; we can even deal with non‐discrete rings. We introduce the concept of rings with certifiable equality which covers discrete rings and much more. A ring R with certifiable equality can be fitted with a partial ideal membership test for ideals of R. Lazy bases of ideals of R [X ] are introduced in order to derive a partial ideal membership test for ideals of R [X ]. It is then proved that if R is Noetherian, then so is R [X ]. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Some recent results of Ayache on going-down domains and extensions of domains that either are residually algebraic or have DCC on intermediate rings are generalized to the context of extensions of commutative rings. Given a finite maximal chain 𝒞 of R-subalgebras of a weak Baer ring T, it is shown how a “min morphism” hypothesis can be used to transfer the “going-down ring” property from R to each member of 𝒞. The integral minimal ring extensions which are min morphisms are classified. The ring extensions satisfying FCP (i.e., for which each chain of intermediate rings is finite) are characterized as the strongly affine extensions with DCC on intermediate rings. In the relatively integrally closed case, such extensions R ? T induce open immersions Spec(S) → Spec(R) for each R-subalgebra S of T.  相似文献   

20.
Let R be a commutative ring with identity, Z(R) its set of zero-divisors, and Nil(R) its ideal of nilpotent elements. The zero-divisor graph of R is Γ(R) = Z(R)\{0}, with distinct vertices x and y adjacent if and only if xy = 0. In this article, we study Γ(R) for rings R with nonzero zero-divisors which satisfy certain divisibility conditions between elements of R or comparability conditions between ideals or prime ideals of R. These rings include chained rings, rings R whose prime ideals contained in Z(R) are linearly ordered, and rings R such that {0} ≠ Nil(R) ? zR for all z ∈ Z(R)\Nil(R).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号