首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 281 毫秒
1.
Goal programming is an important technique for solving many decision/management problems. Fuzzy goal programming involves applying the fuzzy set theory to goal programming, thus allowing the model to take into account the vague aspirations of a decision-maker. Using preference-based membership functions, we can define the fuzzy problem through natural language terms or vague phenomena. In fact, decision-making involves the achievement of fuzzy goals, some of them are met and some not because these goals are subject to the function of environment/resource constraints. Thus, binary fuzzy goal programming is employed where the problem cannot be solved by conventional goal programming approaches. This paper proposes a new idea of how to program the binary fuzzy goal programming model. The binary fuzzy goal programming model can then be solved using the integer programming method. Finally, an illustrative example is included to demonstrate the correctness and usefulness of the proposed model.  相似文献   

2.
This paper proposes a method for solving linear programming problems where all the coefficients are, in general, fuzzy numbers. We use a fuzzy ranking method to rank the fuzzy objective values and to deal with the inequality relation on constraints. It allows us to work with the concept of feasibility degree. The bigger the feasibility degree is, the worst the objective value will be. We offer the decision-maker (DM) the optimal solution for several different degrees of feasibility. With this information the DM is able to establish a fuzzy goal. We build a fuzzy subset in the decision space whose membership function represents the balance between feasibility degree of constraints and satisfaction degree of the goal. A reasonable solution is the one that has the biggest membership degree to this fuzzy subset. Finally, to illustrate our method, we solve a numerical example.  相似文献   

3.
The problem under consideration is that of optimally controlling and stopping either a deterministic or a stochastic system in a fuzzy environment. The optimal decision is the sequence of controls that maximizes the membership function of the intersection of the fuzzy constraints and a fuzzy goal. The fuzzy goal is a fuzzy set in the cartesian product of the state space with the set of possible stopping times. Dynamic programming is applied to yield a numerical solution. This approach yields an algorithm that corrects a result of Kacprzyk.  相似文献   

4.
The aim of this paper is to deal with a multiobjective linear programming problem with fuzzy random coefficients. Some crisp equivalent models are presented and a traditional algorithm based on an interactive fuzzy satisfying method is proposed to obtain the decision maker’s satisfying solution. In addition, the technique of fuzzy random simulation is adopted to handle general fuzzy random objective functions and fuzzy random constraints which are usually hard to be converted into their crisp equivalents. Furthermore, combined with the techniques of fuzzy random simulation, a genetic algorithm using the compromise approach is designed for solving a fuzzy random multiobjective programming problem. Finally, illustrative examples are given in order to show the application of the proposed models and algorithms.  相似文献   

5.
Multi-item inventory model with stock-dependent demand and two-storage facilities is developed in fuzzy environment (purchase cost, investment amount and storehouse capacity are imprecise) under inflation and time value of money. Joint replenishment and simultaneous transfer of items from one warehouse to another is proposed using basic period (BP) policy. As some parameters are fuzzy in nature, objective (average profit) function as well as some constraints are imprecise in nature. Model is formulated as to optimize the possibility/necessity measure of the fuzzy goal of the objective function and constraints are satisfied with some pre-defined necessity. A genetic algorithm (GA) is developed with roulette wheel selection, binary crossover and mutation and is used to solve the model when the equivalent crisp form of the model is available. In other cases fuzzy simulation process is proposed to measure possibility/necessity of the fuzzy goal as well as to check the constraints of the problem and finally the model is solved using fuzzy simulation based genetic algorithm (FSGA). The models are illustrated with some numerical examples and some sensitivity analyses have been done.  相似文献   

6.
《Applied Mathematical Modelling》2014,38(19-20):4673-4685
This paper proposes an enhanced interactive satisficing method via alternative tolerance for fuzzy goal programming with progressive preference. The alternative tolerances of the fuzzy objectives with three types of fuzzy relations are used to model progressive preference of decision maker. In order to improve the dissatisficing objectives, the relaxed satisficing objectives are sacrificed by modifying their tolerant limits. By means of attainable reference point, the auxiliary programming is designed to generate the tolerances of the dissatisficing objectives for ensuring feasibility. Correspondingly, the membership functions are updated or the objective constraints are added. The Max–Min goal programming model (or the revised one) and the test model of the M-Pareto optimality are solved lexicographically. By our method, the dissatisficing objectives are improved iteratively till the preferred result is acquired. Illustrative examples show its power.  相似文献   

7.
In this paper, a multiobjective quadratic programming problem having fuzzy random coefficients matrix in the objective and constraints and the decision vector are fuzzy pseudorandom variables is considered. First, we show that the efficient solutions of fuzzy quadratic multiobjective programming problems are resolved into series-optimal-solutions of relative scalar fuzzy quadratic programming. Some theorems are proved to find an optimal solution of the relative scalar quadratic multiobjective programming with fuzzy coefficients, having decision vectors as fuzzy variables. At the end, numerical examples are illustrated in the support of the obtained results.  相似文献   

8.
A bi-matrix game with fuzzy goal is shown to be equivalent to a (crisp) non-linear programming problem in which the objective as well as all constraint functions are linear except two constraint functions, which are quadratic. This equivalence is further extended to bi-matrix games with fuzzy pay-offs, as well as to bi-matrix games with fuzzy goals and fuzzy payoffs, whose equilibrium strategies are conceptualized by employing a suitable ranking (defuzzification) function.  相似文献   

9.
Narasimhan incorporated fuzzy set theory within goal programming formulation in 1980. Since then numerous research has been carried out in this field. One of the well-known models for solving fuzzy goal programming problems was proposed by Hannan in 1981. In this paper the conventional MINMAX approach in goal programming is applied to solve fuzzy goal programming problems. It is proved that the proposed model is an extension to Hannan model that deals with unbalanced triangular linear membership functions. In addition, it is shown that the new model is equivalent to a model proposed in 1991 by Yang et al. Moreover, a weighted model of the new approach is introduced and is compared with Kim and Whang’s model presented in 1998. A numerical example is given to demonstrate the validity and strengths of the new models.  相似文献   

10.
This paper describes the use of fuzzy set theory in goal programming (GP) problems. In particular, it is demonstrated how fuzzy or imprecise aspirations of the decision maker (DM) can be quantified through the use of piecewise linear and continuous functions. Models are then presented for the use of fuzzy goal programming with preemptive priorities, with Archimedean weights, and with the maximization of the membership function corresponding to the minimum goal. Examples are also provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号