首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
We consider a control problem for systems described by ordinary differential equations with linear controls. The solution of the control problem for a three-dimensional nilpotent system with two-dimensional control is presented in the classes of trigonometric controls, piecewise constant controls, and controls minimizing the sub-Riemannian length functional. The corresponding programmed controls and synthesis families are constructed.  相似文献   

2.
The present work proposes a new set of hybrid functions (HF) which evolved from the synthesis of sample-and-hold functions (SHF) and triangular functions (TF). Traditional block pulse functions (BPF) still continue to be attractive to many researchers in the arena of control theory. Block pulse functions also gave birth to a few useful variants. Two such variants are SHF and TF. The former is efficient for analyzing sample-and-hold control systems, while triangular functions established their superiority in obtaining piecewise linear solution of various control problems. After developing the basic theory of HF, a few square integrable functions are approximated via this set in a piecewise linear manner. For such approximation, it is shown, the mean integral square error (MISE) is much less than block pulse function based approximation. The operational matrices for integration in HF domain are also derived. Finally, this new set is employed for solving identification problem from impulse response data. The results are compared with the solutions obtained via BPF, SHF, TF, etc. and many illustrations are presented.  相似文献   

3.
An approximation of the Hamilton-Jacobi-Bellman equation connected with the infinite horizon optimal control problem with discount is proposed. The approximate solutions are shown to converge uniformly to the viscosity solution, in the sense of Crandall-Lions, of the original problem. Moreover, the approximate solutions are interpreted as value functions of some discrete time control problem. This allows to construct by dynamic programming a minimizing sequence of piecewise constant controls.  相似文献   

4.
An anti-noise problem on a finite time interval is solved by minimization of a quadratic functional on the Hilbert space of square integrable controls. To this end, the one-dimensional wave equation with point sources and pointwise reflecting boundary conditions is decomposed into a system for the two propagating components of waves. Wellposedness of this system is proved for a class of data that includes piecewise linear initial conditions and piecewise constant forcing functions. It is shown that for such data the optimal piecewise constant control is the solution of a sparse linear system. Methods for its computational treatment are presented as well as examples of their applicability. The convergence of discrete approximations to the general optimization problem is demonstrated by finite element methods.  相似文献   

5.
In this paper, a new approach for finding the approximate solution of the Stokes problem is introduced. In this method the problem is transformed to an equivalent optimization problem. Then, by considering it as a distributed parameter control system, the theory of measure is used to approximate the velocity functions by piecewise linear functions. Then, the approximate values of pressure are obtained by a finite difference scheme.  相似文献   

6.
《Optimization》2012,61(3):237-244
In this paper, we consider a class of nonlinear optimal control problems (Bolza-problems) with constraints of the control vector, initial and boundary conditions of the state vectors. The time interval is fixed. Our approach to parametrize both the state functions and the control functions is described by general piecewise polynomials with unknown coefficients (parameters), where a fixed partition of the time interval is used. Here each of these functions in a suitable way individually will be approximated by such polynomials. The optimal control problem thus is reduced to a mathematical programming problem for these parameters. The existence of an optimal solution is assumed. Convergence properties of this method are not considered in this paper.  相似文献   

7.
This paper presents a flatness-based approach for the solution of the feedforward control problem for a boundary controlled semilinear wave equation. The solution to a given piecewise analytical desired output trajectory is shown to be piecewise analytical, which allows the application of a formal power series approach on suitable subregions in adequate coordinates. The subregions are determined by the characteristic curves of the system passing through the non-analyticity points of the desired trajectory. Convergence of the solution is demonstrated and simulation results are given for some set of parameters. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
In this paper, we present a global optimization method for solving nonconvex mixed integer nonlinear programming (MINLP) problems. A convex overestimation of the feasible region is obtained by replacing the nonconvex constraint functions with convex underestimators. For signomial functions single-variable power and exponential transformations are used to obtain the convex underestimators. For more general nonconvex functions two versions of the so-called αBB-underestimator, valid for twice-differentiable functions, are integrated in the actual reformulation framework. However, in contrast to what is done in branch-and-bound type algorithms, no direct branching is performed in the actual algorithm. Instead a piecewise convex reformulation is used to convexify the entire problem in an extended variable-space, and the reformulated problem is then solved by a convex MINLP solver. As the piecewise linear approximations are made finer, the solution to the convexified and overestimated problem will form a converging sequence towards a global optimal solution. The result is an easily-implementable algorithm for solving a very general class of optimization problems.  相似文献   

9.
In this paper, we investigate the superconvergence property and the $L^{\infty}$-error estimates of mixed finite element methods for a semilinear elliptic control problem with an integral constraint. The state and co-state are approximated by the order one Raviart-Thomas mixed finite element space and the control variable is approximated by piecewise constant functions or piecewise linear functions. We derive some superconvergence results for the control variable and the state variables when the control is approximated by piecewise constant functions. Moreover, we derive $L^{\infty}$-error estimates for both the control variable and the state variables when the control is discretized by piecewise linear functions. Finally, some numerical examples are given to demonstrate the theoretical results.  相似文献   

10.
We discretize a directionally sparse parabolic control problem governed by a linear equation by means of control approximations that are piecewise constant in time and continuous piecewise linear in space. By discretizing the objective functional with the help of appropriate numerical quadrature formulas, we are able to show that the discrete optimal solution exhibits a directional sparse pattern alike the one enjoyed by the continuous solution. Error estimates are obtained and a comparison with the cases of having piecewise approximations of the control or a semilinear state equation are discussed. Numerical experiments that illustrate the theoretical results are included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号