首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let a(x)=(a_(ij)(x)) be a uniformly continuous, symmetric and matrix-valued function satisfying uniformly elliptic condition, p(t, x, y) be the transition density function of the diffusion process associated with the Diriehlet space (, H_0~1 (R~d)), where(u, v)=1/2 integral from n=R~d sum from i=j to d(u(x)/x_i v(x)/x_ja_(ij)(x)dx).Then by using the sharpened Arouson's estimates established by D. W. Stroock, it is shown that2t ln p(t, x, y)=-d~2(x, y).Moreover, it is proved that P_y~6 has large deviation property with rate functionI(ω)=1/2 integral from n=0 to 1<(t), α~(-1)(ω(t)),(t)>dtas s→0 and y→x, where P_y~6 denotes the diffusion measure family associated with the Dirichlet form (ε, H_0~1(R~d)).  相似文献   

2.
A simple qualitative model of dynamic combustion
  相似文献   

3.
In this paper, the author proves the existence and uniqueness of nonnegative solution for the first boundary value problem of uniform degenerated parabolic equation $$\[\left\{ {\begin{array}{*{20}{c}} {\frac{{\partial u}}{{\partial t}} = \sum {\frac{\partial }{{\partial {x_i}}}\left( {v(u){A_{ij}}(x,t,u)\frac{{\partial u}}{{\partial {x_j}}}} \right) + \sum {{B_i}(x,t,u)} \frac{{\partial u}}{{\partial {x_i}}}} + C(x,t,u)u\begin{array}{*{20}{c}} {}&{(x,t) \in [0,T]} \end{array},}\{u{|_{t = 0}} = {u_0}(x),x \in \Omega ,}\{u{|_{x \in \partial \Omega }} = \psi (s,t),0 \le t \le T} \end{array}} \right.\]$$ $$\[\left( {\frac{1}{\Lambda }{{\left| \alpha \right|}^2} \le \sum {{A_{ij}}{\alpha _i}{\alpha _j}} \le \Lambda {{\left| \alpha \right|}^2},\forall a \in {R^n},0 < \Lambda < \infty ,v(u) > 0\begin{array}{*{20}{c}} {and}&{v(u) \to 0\begin{array}{*{20}{c}} {as}&{u \to 0} \end{array}} \end{array}} \right)\]$$ under some very weak restrictions, i.e. $\[{A_{ij}}(x,t,r),{B_i}(x,t,r),C(x,t,r),\sum {\frac{{\partial {A_{ij}}}}{{\partial {x_j}}}} ,\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}} \in \overline \Omega } \times [0,T] \times R,\left| {{B_i}} \right| \le \Lambda ,\left| C \right| \le \Lambda ,\],\[\left| {\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}}} } \right| \le \Lambda ,\partial \Omega \in {C^2},v(r) \in C[0,\infty ).v(0) = 0,1 \le \frac{{rv(r)}}{{\int_0^r {v(s)ds} }} \le m,{u_0}(x) \in {C^2}(\overline \Omega ),\psi (s,t) \in {C^\beta }(\partial \Omega \times [0,T]),0 < \beta < 1\],\[{u_0}(s) = \psi (s,0).\]$  相似文献   

4.
This paper deals with the following mixed problem for Quasilinear hyperbolic equationsThe M order uniformly valid asymptotic solutions are obtained and there errors areestimated.  相似文献   

5.
研究拟线性椭圆系统(?)的非平凡非负解或正解的多重性,这里Ω(?)R~N是具有光滑边界(?)Ω的有界域,1≤qp~*/p~*-q,其中当N≤p时,p~*=+∞,而当1相似文献   

6.
Let \[f(z) = z + \sum\limits_{n = 1}^\infty {{a_n}{z^n} \in S} {\kern 1pt} {\kern 1pt} {\kern 1pt} and{\kern 1pt} {\kern 1pt} {\kern 1pt} \log \frac{{f(z) - f(\xi )}}{{z - \xi }} - \frac{{z\xi }}{{f(z)f(\xi )}} = \sum\limits_{m,n = 1}^\infty {{d_{m,n}}{z^m}{\xi ^n},} \], we denote \[{f_v} = f({z_v})\] , \[\begin{array}{l} {\varphi _\varepsilon }({z_u}{z_v}) = {\left| {\frac{{{f_u} - {f_v}}}{{{z_u} - {z_v}}}} \right|^\varepsilon }\frac{1}{{(1 - {z_u}{{\bar z}_v})}},\g_m^\varepsilon (z) = - {F_m}(\frac{1}{{f(z)}}) + \frac{1}{{{z^m}}} + \varepsilon {{\bar z}^m}, \end{array}\], where \({F_m}(t)\) is a Faber polynomial of degree m. Theorem 1. If \[f(z) \in S{\kern 1pt} {\kern 1pt} {\kern 1pt} and{\kern 1pt} {\kern 1pt} {\kern 1pt} \sum\limits_{u,v = 1}^N {{A_{u,v}}{x_u}{{\bar x}_v} \ge 0} \] and then \[\begin{array}{l} \sum\limits_{u,v = 1}^N {{A_{u,v}}{\lambda _u}{{\bar \lambda }_v}} {\left| {\frac{{{f_u} - {f_v}}}{{{z_u} - {z_v}}}} \right|^\varepsilon }\exp \{ \alpha {F_l}({z_u},{z_v})\} \ \le \sum\limits_{u,v = 1}^N {{A_{u,v}}{\lambda _u}{{\bar \lambda }_v}} \varphi _\varepsilon ^\alpha ({z_u}{z_v})l = 1,2,3, \end{array}\], where \[\begin{array}{l} {F_1}({z_u},{z_v}) = \frac{1}{2}\sum\limits_{n = 1}^\infty {\frac{1}{n}} g_n^\varepsilon ({z_u})\bar g_n^\varepsilon ({z_v}),\{F_2}({z_u},{z_v}) = \frac{1}{{1 + {\varepsilon _n}R{d_{n,n}}}}Rg_n^\varepsilon ({z_u})Rg_n^\varepsilon ({z_v}),\{F_3}({z_u},{z_v}) = \frac{1}{{1 - {\varepsilon _n}R{d_{n,n}}}}Rg_n^\varepsilon ({z_u})Rg_n^\varepsilon ({z_v}). \end{array}\] The \[F({z_u},{z_v}) = \frac{1}{2}{g_1}({z_u}){{\bar g}_2}({z_v})\] is due to Kungsun. Theorem 2. If \(f(z) \in S\) ,then \[P(z) + \left| {\sum\limits_{u,v = 1}^N {{A_{u,v}}{\lambda _u}{{\bar \lambda }_v}} {{\left| {\frac{{{f_u} - {f_v}}}{{{z_u} - {z_v}}}\frac{{{z_u}{z_v}}}{{{f_u}{f_v}}}} \right|}^\varepsilon }} \right| \le \sum\limits_{u,v = 1}^N {{\lambda _u}{{\bar \lambda }_v}} \frac{1}{{1 - {z_u}{{\bar z}_v}}}\], where \[\begin{array}{l} P(z) = \frac{1}{2}\sum\limits_{n = 1}^\infty {\frac{1}{n}} {G_n}(z),\{G_n}(z) = {\left| {\left| {\sum\limits_{n = 1}^N {{\beta _u}({F_n}(\frac{1}{{f({z_u})}}) - \frac{1}{{z_u^n}})} } \right| - \left| {\sum\limits_{n = 1}^N {{\beta _u}z_u^n} } \right|} \right|^2}, \end{array}\], \(P(z) \equiv 0\) is due to Xia Daoxing.  相似文献   

7.
By the Fourier method a solution of the equation
  相似文献   

8.
In this paper initial value problems and nonlinear mixed boundary value problems for the quasilinear parabolic systems below $\[\frac{{\partial {u_k}}}{{\partial t}} - \sum\limits_{i,j = 1}^n {a_{ij}^{(k)}} (x,t)\frac{{{\partial ^2}{u_k}}}{{\partial {x_i}\partial {x_j}}} = {f_k}(x,t,u,{u_x}),k = 1, \cdots ,N\]$ are discussed.The boundary value conditions are $\[{u_k}{|_{\partial \Omega }} = {g_k}(x,t),k = 1, \cdots ,s,\]$ $\[\sum\limits_{i = 1}^n {b_i^{(k)}} (x,t)\frac{{\partial {u_k}}}{{\partial {x_i}}}{|_{\partial \Omega }} = {h_k}(x,t,u),k = s + 1, \cdots N.\]$ Under some "basically natural" assumptions it is shown by means of the Schauder type estimates of the linear parabolic equations and the embedding inequalities in Nikol'skii spaces,these problems have solutions in the spaces $\[{H^{2 + \alpha ,1 + \frac{\alpha }{2}}}(0 < \alpha < 1)\]$.For the boundary value problem with $\[b_i^{(k)}(x,t) = \sum\limits_{j = 1}^n {a_{ij}^{(k)}} (x,t)\cos (n,{x_j})\]$ uniqueness theorem is proved.  相似文献   

9.
In this paper, the authors investigate the first boundary value problem for equations of the form $\[Lu = \frac{{\partial u}}{{\partial t}} - \frac{\partial }{{\partial {x_i}}}({a^{ij}}(u,x,t)\frac{{\partial u}}{{\partial {x_j}}}) - \frac{{\partial {f^i}(u,x,t)}}{{\partial {x_i}}} = g(u,x,t)\]$ with $a^ij(u,x,t)\xi_i\xi_j\geq 0$ An existence theorem of solution in BV_1,1/2(Q_T) is proved. The principal condition is that there exists \delta>0 such that for any (x, t)\in Q_T,|u|\geq M $a^ij(u,x,t)\xi_i\xi_j-\delta\sum\limits_i,j=1^m(a_x^ij(u,x,t)\xi_i)^2\geq 0$  相似文献   

10.
The author defines, using jets, cohomology $H^p(\Lambda _{f,k-})$ for hypersurfaces, which are invariant under contact transformations. For isolated hypersurface singularities, it is proved that $H^0(\Lambda _{f,k-})=O_{U,0}/f^{k+1}O_{U,0},$ $H^p(\Lambda _{f,k-})=0,1\leq p \leq N-3 or p=N,$ $dimH^{N-2}(\Lambda _{f,k-})-dimH^{N-1}(\Lambda _{f,k-})=\[\left( {\begin{array}{*{20}{c}} k \ N \end{array}} \right)\dim {O_{U,0}}/(f,\frac{{\partial f}}{{\partial {x_1}}}, \cdots ,\frac{{\partial f}}{{\partial {x_N}}}){O_{U,0}}\] $ The algorithm of computation for H^{N-2} and H^{N-1} is given, and it is proved that $H^{N-1}=0$ when f is quasi-homogeneous.  相似文献   

11.
We study the radially symmetric Schr?dinger equation
$ - \varepsilon ^{2} \Delta u + V{\left( {|x|} \right)}u = W{\left( {|x|} \right)}u^{p} ,\quad u > 0,\;\;u \in H^{1} ({\mathbb{R}}^{N} ), $ - \varepsilon ^{2} \Delta u + V{\left( {|x|} \right)}u = W{\left( {|x|} \right)}u^{p} ,\quad u > 0,\;\;u \in H^{1} ({\mathbb{R}}^{N} ),  相似文献   

12.
In this work we consider the following class of elliptic problems $\begin{cases} −∆_Au + u = a(x)|u|^{q−2}u + b(x)|u|^{p−2}u & {\rm in} & \mathbb{R}^N, \\u ∈ H^1_A (\mathbb{R}^N), \tag{P} \end{cases}$ with $2 < q < p < 2^∗ = \frac{2N}{N−2},$ $a(x)$ and $b(x)$ are functions that can change sign and satisfy some additional conditions; $u \in H^1_A (\mathbb{R}^N)$ and $A : \mathbb{R}^N → \mathbb{R}^N$ is a magnetic potential. Also using the Nehari method in combination with other complementary arguments, we discuss the existence of infinitely many solutions to the problem in question, varying the assumptions about the weight functions.  相似文献   

13.
In this paper we study the first and tiie third boundary value problems for the elliptic equation \[\begin{array}{l} \varepsilon \left( {\sum\limits_{i,j = 1}^m {{d_{i,j}}(x)\frac{{{\partial ^2}u}}{{\partial {x_i}\partial {x_j}}} + \sum\limits_{i = 1}^m {{d_i}(x)\frac{{\partial u}}{{\partial {x_i}}} + d(x)u} } } \right) + \sum\limits_{i = 1}^m {{a_i}(x)\frac{{\partial u}}{{\partial {x_i}}} + b(x) + c} \ = f(x),x \in G(0 < \varepsilon \le 1), \end{array}\] as the degenerated operator bas singular points, where \[\sum\limits_{i,j = 1}^m {{d_{i,j}}(x){\xi _i}{\xi _j}} \ge {\delta _0}\sum\limits_{i = 1}^m {\xi _i^2} ,({\delta _0} > 0,x \in G).\] The uniformly valid asymptotic solutions of boundary value problems have been obtained under the condition of \[\sum\limits_{i = 1}^m {{a_i}(x){n_i}(x){|_{\partial G}} > 0,or} \sum\limits_{i = 1}^m {{a_i}(x){n_i}(x){|_{\partial G}} < 0} ,\] where \(n = ({n_1}(x),{n_2}(x), \cdots ,{n_m}(x))\) is the interior normal to \({\partial G}\).  相似文献   

14.
In this paper we consider the systems governed, by parabolioc equations \[\frac{{\partial y}}{{\partial t}} = \sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial {x_i}}}} ({a_{ij}}(x,t)\frac{{\partial y}}{{\partial {x_j}}}) - ay + f(x,t)\] subject to the boundary control \[\frac{{\partial y}}{{\partial {\nu _A}}}{|_\sum } = u(x,t)\] with the initial condition \[y(x,0) = {y_0}(x)\] We suppose that U is a compact set but may not be convex in \[{H^{ - \frac{1}{2}}}(\Gamma )\], Given \[{y_1}( \cdot ) \in {L^2}(\Omega )\] and d>0, the time optimal control problem requiers to find the control \[u( \cdot ,t) \in U\] for steering the initial state {y_0}( \cdot )\] the final state \[\left\| {{y_1}( \cdot ) - y( \cdot ,t)} \right\| \le d\] in a minimum, time. The following maximum principle is proved: Theorem. If \[{u^*}(x,t)\] is the optimal control and \[{t^*}\] the optimal time, then there is a solution to the equation \[\left\{ {\begin{array}{*{20}{c}} { - \frac{{\partial p}}{{\partial t}} = \sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial {x_i}}}({a_{ji}}(x,t)\frac{{\partial p}}{{\partial {x_j}}}) - \alpha p,} }\{\frac{{\partial p}}{{\partial {\nu _{{A^'}}}}}{|_\sum } = 0} \end{array}} \right.\] with the final condition \[p(x,{t^*}) = {y^*}(x,{t^*}) - {y_1}(x)\], such that \[\int_\Gamma {p(x,t){u^*}} (x,t)d\Gamma = \mathop {\max }\limits_{u( \cdot ) \in U} \int_\Gamma {p(x,t)u(x)d\Gamma } \]  相似文献   

15.
In this work, we investigate the existence and the uniqueness of solutions for the nonlocal elliptic system involving a singular nonlinearity as follows: $$ \left\{\begin{array}{ll} (-\Delta_p)^su = a(x)|u|^{q-2}u +\frac{1-\alpha}{2-\alpha-\beta} c(x)|u|^{-\alpha}|v|^{1-\beta}, \quad \text{in }\Omega,\ (-\Delta_p)^s v= b(x)|v|^{q-2}v +\frac{1-\beta}{2-\alpha-\beta} c(x)|u|^{1-\alpha}|v|^{-\beta}, \quad \text{in }\Omega,\ u=v = 0 ,\;\;\mbox{ in }\,\mathbb{R}^N\setminus\Omega, \end{array} \right. $$ where $\Omega $ is a bounded domain in $\mathbb{R}^{n}$ with smooth boundary, $0<\alpha <1,$ $0<\beta <1,$ $2-\alpha -\beta 相似文献   

16.
本文在无边界流的光滑有界区域$\Omega\subset\mathbb{R}^n~(n>2)$上研究了具有奇异灵敏度及logistic源的抛物-椭圆趋化系统$$\left\{\begin{array}{ll}u_t=\Delta u-\chi\nabla\cdot(\frac{u}{v}\nabla v)+r u-\mu u^k,&x\in\Omega,\,t>0,\\ 0=\Delta v-v+u,&x\in\Omega,\,t>0\end{array}\right.$$ 其中$\chi$, $r$, $\mu>0$, $k\geq2$. 证明了若当$r$适当大, 则当$t\rightarrow\infty$时该趋化系统全局有界解呈指数收敛于$((\frac{r}{\mu})^{\frac{1}{k-1}}, (\frac{r}{\mu})^{\frac{1}{k-1}})$.  相似文献   

17.
Solutions of the two-dimensional initial boundary-value problem for the Navier-Stokes equations are approximated by solutions of the initial boundary-value problem 9 $$\begin{array}{*{20}c} {\frac{{\partial v}}{{\partial t}}^\varepsilon - v\Delta v^\varepsilon + v_k^\varepsilon v_{x_k }^\varepsilon + \frac{1}{2}v^\varepsilon div v^\varepsilon - \frac{1}{\varepsilon }grad div w^\varepsilon = f_1 ,} \\ {\frac{{\partial w^\varepsilon }}{{\partial t}} + \alpha w^\varepsilon = v^\varepsilon ,} \\ \end{array} $$ 10 $$v^\varepsilon \left| {_{t = 0} = v_0^\varepsilon (x), w^\varepsilon } \right|_{t = 0} = 0, x \in \Omega , v^\varepsilon \left| {_{\partial \Omega } = w^\varepsilon } \right|_{\partial \Omega } = 0, t \in \mathbb{R}^ + $$ . We study the proximity of the solutions of these problems in suitable norms and also the proximity of their minimal global B-attractors. Similar results are valid for two-dimensional equations of motion of the Oldroyd fluids (see Eqs. (38) and (41)) and for three-dimensional equations of motion of the Kelvin-Voight fluids (see Eqs. (39) and (43)). Bibliography: 17 titles.  相似文献   

18.
In this paper, we provide the existence theorem for solutions of general boundary value problem of quasi-linear second order elliptic differential equations in the following form: $\[\sum\limits_{i,j = 1}^n {({a_{ij}}(x,u)\frac{{\partial u}}{{\partial {x_j}}}) + a(x,u,{u_{{x_k}}}),{\rm{ }}in} {\rm{ }}\Omega \]$, $\[\alpha (x,u)\frac{{\partial u}}{{\partial \gamma }} + \beta (x,u) = 0,{\rm{ on }}\partial \Omega \]$, where \alpha(x, u) \geq 0,\alpha_u(x, u) \leq 0 and \gamma is some direction, defining on $\[\partial \Omega \]$.  相似文献   

19.
Let A be a bounded linear operator on a Banach space and let g a be vector-valued function that is analytic in a neighborhood of the origin of ℝ. We obtain conditions of the existence of analytic solutions for the Cauchy problem Moreover, we consider a representation of the solution of this problem as a Poisson integral and study the Cauchy problem for the corresponding inhomogeneous equation. Bibliography: 22 titles. Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 355, 2008, pp. 139–162.  相似文献   

20.
In order better to research the singularities of the solutions $\[u \in H_{loc}^s(\Omega ),\Omega \subset {R^n},s > \frac{n}{2} + 1\]$ , for semilinear hyperbolic equations $\[u = f(u,Du)\]$, in this paper, a kind of weighted Sobolev space $\[({H^s})_{{P_\mu }}^\alpha \],\[\mu = 1,2,{p_1} = {D_i} - \left| {{D_x}} \right|,{P_2} = {D_i} + \left| {{D_x}} \right|\]$, closely related with the solutions of the equations, is presented. It is discussed that their products tacitly keep roughly $\[{H^{3x - n}}\]$ microlocal regularity on the characteristic directions for $\[{P_\mu }\]$ and invariance under nonlinear maps. Then it is obtained that roughly $\[{H^{3x - n}}\]$ propagation of singularities theorem is valid for $\[u = f(u)\]$.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号