首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Discrete Optimization》2008,5(4):735-747
The set partitioning problem is a fundamental model for many important real-life transportation problems, including airline crew and bus driver scheduling and vehicle routing.In this paper we propose a new dual ascent heuristic and an exact method for the set partitioning problem. The dual ascent heuristic finds an effective dual solution of the linear relaxation of the set partitioning problem and it is faster than traditional simplex based methods. Moreover, we show that the lower bound achieved dominates the one achieved by the classic Lagrangean relaxation of the set partitioning constraints. We describe a simple exact method that uses the dual solution to define a sequence of reduced set partitioning problems that are solved by a general purpose integer programming solver. Our computational results indicate that the new bounding procedure is fast and produces very good dual solutions. Moreover, the exact method proposed is easy to implement and it is competitive with the best branch and cut algorithms published in the literature so far.  相似文献   

2.
This paper presents a new exact algorithm for the Capacitated Vehicle Routing Problem (CVRP) based on the set partitioning formulation with additional cuts that correspond to capacity and clique inequalities. The exact algorithm uses a bounding procedure that finds a near optimal dual solution of the LP-relaxation of the resulting mathematical formulation by combining three dual ascent heuristics. The first dual heuristic is based on the q-route relaxation of the set partitioning formulation of the CVRP. The second one combines Lagrangean relaxation, pricing and cut generation. The third attempts to close the duality gap left by the first two procedures using a classical pricing and cut generation technique. The final dual solution is used to generate a reduced problem containing only the routes whose reduced costs are smaller than the gap between an upper bound and the lower bound achieved. The resulting problem is solved by an integer programming solver. Computational results over the main instances from the literature show the effectiveness of the proposed algorithm.   相似文献   

3.
Facility location models are applicable to problems in many diverse areas, such as distribution systems and communication networks. In capacitated facility location problems, a number of facilities with given capacities must be chosen from among a set of possible facility locations and then customers assigned to them. We describe a Lagrangian relaxation heuristic algorithm for capacitated problems in which each customer is served by a single facility. By relaxing the capacity constraints, the uncapacitated facility location problem is obtained as a subproblem and solved by the well-known dual ascent algorithm. The Lagrangian relaxations are complemented by an add heuristic, which is used to obtain an initial feasible solution. Further, a final adjustment heuristic is used to attempt to improve the best solution generated by the relaxations. Computational results are reported on examples generated from the Kuehn and Hamburger test problems.  相似文献   

4.
The scheduling and rostering of personnel is a problem that occurs in many organizations. Aircrew scheduling has attracted considerable attention with many heuristic methods being proposed, but in recent times set partitioning optimization methods have become more popular. The aircrew rostering problem is discussed and formulated as a generalized set partitioning model. Because of the extremely large optimization models that are generated in practical situations, some special computational techniques have been developed to produce solutions efficiently. These techniques are used to solve problems arising from an airline application in which set partitioning models with more than 650 constraints and 200 000 binary variables are generated. The solutions are produced on a Motorola 68020 microprocessor in little more than three hours.  相似文献   

5.
We propose two new Lagrangian dual problems for chance-constrained stochastic programs based on relaxing nonanticipativity constraints. We compare the strength of the proposed dual bounds and demonstrate that they are superior to the bound obtained from the continuous relaxation of a standard mixed-integer programming (MIP) formulation. For a given dual solution, the associated Lagrangian relaxation bounds can be calculated by solving a set of single scenario subproblems and then solving a single knapsack problem. We also derive two new primal MIP formulations and demonstrate that for chance-constrained linear programs, the continuous relaxations of these formulations yield bounds equal to the proposed dual bounds. We propose a new heuristic method and two new exact algorithms based on these duals and formulations. The first exact algorithm applies to chance-constrained binary programs, and uses either of the proposed dual bounds in concert with cuts that eliminate solutions found by the subproblems. The second exact method is a branch-and-cut algorithm for solving either of the primal formulations. Our computational results indicate that the proposed dual bounds and heuristic solutions can be obtained efficiently, and the gaps between the best dual bounds and the heuristic solutions are small.  相似文献   

6.
We study a variant of the spanning tree problem where we require that, for a given connected graph, the spanning tree to be found has the minimum number of branch vertices (that is vertices of the tree whose degree is greater than two). We provide four different formulations of the problem and compare different relaxations of them, namely Lagrangian relaxation, continuous relaxation, mixed integer-continuous relaxation. We approach the solution of the Lagrangian dual both by means of a standard subgradient method and an ad-hoc finite ascent algorithm based on updating one multiplier at the time. We provide numerical result comparison of all the considered relaxations on a wide set of benchmark instances. A useful follow-up of tackling the Lagrangian dual is the possibility of getting a feasible solution for the original problem with no extra costs. We evaluate the quality of the resulting upper bound by comparison either with the optimal solution, whenever available, or with the feasible solution provided by some existing heuristic algorithms.  相似文献   

7.
This paper presents an exact solution framework for solving some variants of the vehicle routing problem (VRP) that can be modeled as set partitioning (SP) problems with additional constraints. The method consists in combining different dual ascent procedures to find a near optimal dual solution of the SP model. Then, a column-and-cut generation algorithm attempts to close the integrality gap left by the dual ascent procedures by adding valid inequalities to the SP formulation. The final dual solution is used to generate a reduced problem containing all optimal integer solutions that is solved by an integer programming solver. In this paper, we describe how this solution framework can be extended to solve different variants of the VRP by tailoring the different bounding procedures to deal with the constraints of the specific variant. We describe how this solution framework has been recently used to derive exact algorithms for a broad class of VRPs such as the capacitated VRP, the VRP with time windows, the pickup and delivery problem with time windows, all types of heterogeneous VRP including the multi depot VRP, and the period VRP. The computational results show that the exact algorithm derived for each of these VRP variants outperforms all other exact methods published so far and can solve several test instances that were previously unsolved.  相似文献   

8.
This article deals with a method to compute bounds in algorithms for solving the generalized set packing/partitioning problems. The problems under investigation can be solved by the branch and bound method. Linear bounds computed by the simplex method are usually used. It is well known that this method breaks down on some occasions because the corresponding linear programming problems are degenerate. However, it is possible to use the dual (Lagrange) bounds instead of the linear bounds. A partial realization of this approach is described that uses a network relaxation of the initial problem. The possibilities for using the dual network bounds in the approximation techniques to solve the problems under investigation are described.  相似文献   

9.
This paper presents a smoothing heuristic for an NP-hard combinatorial problem. Starting with a convex Lagrangian relaxation, a pathfollowing method is applied to obtain good solutions while gradually transforming the relaxed problem into the original problem formulated with an exact penalty function. Starting points are drawn using different sampling techniques that use randomization and eigenvectors. The dual point that defines the convex relaxation is computed via eigenvalue optimization using subgradient techniques. The proposed method turns out to be competitive with the most recent ones. The idea presented here is generic and can be generalized to all box-constrained problems where convex Lagrangian relaxation can be applied. Furthermore, to the best of our knowledge, this is the first time that a Lagrangian heuristic is combined with pathfollowing techniques. The work was supported by the German Research Foundation (DFG) under grant No 421/2-1.  相似文献   

10.
A new algorithm, the dual active set algorithm, is presented for solving a minimization problem with equality constraints and bounds on the variables. The algorithm identifies the active bound constraints by maximizing an unconstrained dual function in a finite number of iterations. Convergence of the method is established, and it is applied to convex quadratic programming. In its implementable form, the algorithm is combined with the proximal point method. A computational study of large-scale quadratic network problems compares the algorithm to a coordinate ascent method and to conjugate gradient methods for the dual problem. This study shows that combining the new algorithm with the nonlinear conjugate gradient method is particularly effective on difficult network problems from the literature.  相似文献   

11.
We consider the problem of finding the minimum of a real-valued multivariate polynomial function constrained in a compact set defined by polynomial inequalities and equalities. This problem, called polynomial optimization problem (POP), is generally nonconvex and has been of growing interest to many researchers in recent years. Our goal is to tackle POPs using decomposition, based on a partitioning procedure. The problem manipulations are in line with the pattern used in the generalized Benders decomposition, namely projection followed by relaxation. Stengle’s and Putinar’s Positivstellensätze are employed to derive the feasibility and optimality constraints, respectively. We test the performance of the proposed partitioning procedure on a collection of benchmark problems and present the numerical results.  相似文献   

12.
Dynamic constraint aggregation is an iterative method that was recently introduced to speed up the linear relaxation solution process of set partitioning type problems. This speed up is mostly due to the use, at each iteration, of an aggregated problem defined by aggregating disjoint subsets of constraints from the set partitioning model. This aggregation is updated when needed to ensure the exactness of the overall approach. In this paper, we propose a new version of this method, called the multi-phase dynamic constraint aggregation method, which essentially adds to the original method a partial pricing strategy that involves multiple phases. This strategy helps keeping the size of the aggregated problem as small as possible, yielding a faster average computation time per iteration and fewer iterations. We also establish theoretical results that provide some insights explaining the success of the proposed method. Tests on the linear relaxation of simultaneous bus and driver scheduling problems involving up to 2,000 set partitioning constraints show that the partial pricing strategy speeds up the original method by an average factor of 4.5.  相似文献   

13.
This paper proposes a three-stage method for the vehicle-routing problem with time window constraints (VRPTW). Using the Hungarian method the optimal customer matching for an assignment approximation of the VRPTW, which is a travel time-based relaxation that partially respects the time windows, is obtained. The assignment matching is transformed into feasible routes of the VRPTW via a simple decoupling heuristic. The best of these routes, in terms of travelling and vehicle waiting times, form part of the final solution, which is completed by the routes provided by heuristic methods applied to the remainder of the customers. The proposed approach is tested on a set of standard literature problems, and improves the results of the heuristic methods with respect to total travel time. Furthermore, it provides useful insights into the effect of employing optimal travel time solutions resulting from the assignment relaxation to derive partial route sets of the VRPTW.  相似文献   

14.
In this paper we present a heuristic method to generate constrained two-dimensional guillotine cutting patterns. This problem appears in different industrial processes of cutting rectangular plates to produce ordered items, such as in the glass, furniture and circuit board business. The method uses a state space relaxation of a dynamic programming formulation of the problem and a state space ascent procedure of subgradient optimization type. We propose the combination of this existing approach with an and/or-graph search and an inner heuristic that turns infeasible solutions provided in each step of the ascent procedure into feasible solutions. Results for benchmark and randomly generated instances indicate that the method’s performance is competitive compared to other methods proposed in the literature. One of its advantages is that it often produces a relatively tight upper bound to the optimal value. Moreover, in most cases for which an optimal solution is obtained, it also provides a certificate of optimality.  相似文献   

15.
This paper develops certain sensitivity analysis capabilities for use with a primaldual matching code. The specific problem addressed is reoptimizing after the costs of a subset of the edges have been increased by a constant amount. This capability is applied to a dual ascent procedure for a Lagrangian relaxation of a matching problem with a single generalized upper bound side constraint. Some of the sensitivity analysis capabilities should be useful in other contexts as well. In particular, we give a method for solving for a set of dual variables that satisfy the strong complementary conditions given a blossom structure.Part of this work was performed while this author was visiting the University of Waterloo.  相似文献   

16.
We propose a column generation based exact decomposition algorithm for the problem of scheduling n jobs with an unrestrictively large common due date on m identical parallel machines to minimize total weighted earliness and tardiness. We first formulate the problem as an integer program, then reformulate it, using Dantzig–Wolfe decomposition, as a set partitioning problem with side constraints. Based on this set partitioning formulation, a branch and bound exact solution algorithm is developed for the problem. In the branch and bound tree, each node is the linear relaxation problem of a set partitioning problem with side constraints. This linear relaxation problem is solved by column generation approach where columns represent partial schedules on single machines and are generated by solving two single machine subproblems. Our computational results show that this decomposition algorithm is capable of solving problems with up to 60 jobs in reasonable cpu time.  相似文献   

17.
The paper presents a tight Lagrangian bound and an efficient dual heuristic for the flow interception problem. The proposed Lagrangian relaxation decomposes the problem into two subproblems that are easy to solve. Information from one of the subproblems is used within a dual heuristic to construct feasible solutions and is used to generate valid cuts that strengthen the relaxation. Both the heuristic and the relaxation are integrated into a cutting plane method where the Lagrangian bound is calculated using a subgradient algorithm. In the course of the algorithm, a valid cut is added and integrated efficiently in the second subproblem and is updated whenever the heuristic solution improves. The algorithm is tested on randomly generated test problems with up to 500 vertices, 12,483 paths, and 43 facilities. The algorithm finds a proven optimal solution in more than 75% of the cases, while the feasible solution is on average within 0.06% from the upper bound.  相似文献   

18.
Constraint Handling in Genetic Algorithms: The Set Partitioning Problem   总被引:5,自引:0,他引:5  
In this paper we present a genetic algorithm-based heuristic for solving the set partitioning problem (SPP). The SPP is an important combinatorial optimisation problem used by many airlines as a mathematical model for flight crew scheduling.A key feature of the SPP is that it is a highly constrained problem, all constraints being equalities. New genetic algorithm (GA) components: separate fitness and unfitness scores, adaptive mutation, matching selection and ranking replacement, are introduced to enable a GA to effectively handle such constraints. These components are generalisable to any GA for constrained problems.We present a steady-state GA in conjunction with a specialised heuristic improvement operator for solving the SPP. The performance of our algorithm is evaluated on a large set of real-world problems. Computational results show that the genetic algorithm-based heuristic is capable of producing high-quality solutions.  相似文献   

19.
This paper presents a heuristic method for solving the uncapacitated facility-location problem (UFLP), which is similar to Erlenkotter's ‘dual ascent’ procedure. The heuristic is of the ‘add’ type, which progressively selects facilities to open according to a certain criterion derived from the analysis of the linear programming dual. Computational experience with both (static) UFLPs and dynamic UFLPs reveals that the heuristic method yields solutions in most cases superior in quality to those achieved by the dual-ascent procedure, with barely noticeable additional computation time.  相似文献   

20.
Gomory's group relaxation for integer programs has been refined by column generation methods and dual ascent algorithms to identify a set of candidate solutions which are feasible in the relaxation but not necessarily so in the original integer program. Attempts at avoiding branch and bound procedures at this point have focussed on providing extra group constraints which eliminate all or most of the candidate solutions so that further ascent can take place. It will be shown that a single constraint usually of order 2 or 3, can eliminate all of the candidate solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号