首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Based on the eigensystem {λjj} of -Δ, the multiple solutions for nonlinear problem Δu + f(u) = 0 in Ω,u = 0 on ?Ω are approximated. A new search-extension method (SEM), which consists of three steps in three level subspaces, is proposed. Numerical simulations for several typical nonlinear cases, i.e. f(u) = u 3, u 2, (u - p), u 2(u 2 - p), are completed and some conjectures are presented.  相似文献   

2.
Given a prime p, we consider the dynamical system generated by repeated exponentiations modulo p, that is, by the map \({u \mapsto f_g(u)}\), where f g (u) ≡ g u (mod p) and 0 ≤ f g (u) ≤ p ? 1. This map is in particular used in a number of constructions of cryptographically secure pseudorandom generators. We obtain nontrivial upper bounds on the number of fixed points and short cycles in the above dynamical system.  相似文献   

3.
The asymptotic scattering matrix s ε(λ) for a Dirac-Krein system with signature matrix J = diag{ I p ,-I p }, integrable potential, and the boundary condition u 1(0, λ) = u 2(0, λ)ε(λ) with a coefficient ε(λ) that belongs to the Schur class of holomorphic contractive p × p matrix-valued functions in the open upper half-plane is defined. The inverse asymptotic scattering problem for a given s ε is analyzed by Krein’s method. Earlier studies by Krein and others focused on the case in which ε = I p (or a constant unitary matrix).  相似文献   

4.
Let G be a group of order mu and U a normal subgroup of G of order u. Let G/U = {U 1,U 2, . . . ,U m } be the set of cosets of U in G. We say a matrix H = [h ij ] of order k with entries from G is a quasi-generalized Hadamard matrix with respect to the cosets G/U if \({\sum_{1\le t \le k} h_{it}h_{jt}^{-1} = \lambda_{ij1}U_1+\cdots+\lambda_{ijm}U_m (\exists\lambda_{ij1},\ldots, \exists \lambda_{ijm} \in \mathbb{Z})}\) for any ij. On the other hand, in our previous article we defined a modified generalized Hadamard matrix GH(s, u, λ) over a group G, from which a TD λ (, u) admitting G as a semiregular automorphism group is obtained. In this article, we present a method for combining quasi-generalized Hadamard matrices and semiregular relative difference sets to produce modified generalized Hadamard matrices.  相似文献   

5.
We consider the nonlinear Schr¨odinger equation-?u +(λa(x) + 1)u = |u|~(p-1) u on a locally finite graph G =(V, E). We prove via the Nehari method that if a(x) satisfies certain assumptions, for any λ 1, the equation admits a ground state solution uλ. Moreover, as λ→∞, the solution uλconverges to a solution of the Dirichlet problem-?u + u = |u|~(p-1) u which is defined on the potential well ?. We also provide a numerical experiment which solves the equation on a finite graph to illustrate our results.  相似文献   

6.
We prove that the mixed problem for the Klein–Gordon–Fock equation u tt (x, t) ? u xx (x, t) + au(x, t) = 0, where a ≥ 0, in the rectangle Q T = [0 ≤ x ≤ l] × [0 ≤ tT] with zero initial conditions and with the boundary conditions u(0, t) = μ(t) ∈ L p [0, T ], u(l, t) = 0, has a unique generalized solution u(x, t) in the class L p (Q T ) for p ≥ 1. We construct the solution in explicit analytic form.  相似文献   

7.
Let {Z u = ((εu, i, j))p×n} be random matrices where {εu, i, j} are independently distributed. Suppose {A i }, {B i } are non-random matrices of order p × p and n × n respectively. Consider all p × p random matrix polynomials \(P = \prod\nolimits_{i = 1}^{k_l } {\left( {n^{ - 1} A_{t_i } Z_{j_i } B_{s_i } Z_{j_i }^* } \right)A_{t_{k_l + 1} } }\). We show that under appropriate conditions on the above matrices, the elements of the non-commutative *-probability space Span {P} with state p?1ETr converge. As a by-product, we also show that the limiting spectral distribution of any self-adjoint polynomial in Span{P} exists almost surely.  相似文献   

8.
We prove the following generalization of the classical Shephard–Todd–Chevalley Theorem. Let G be a finite group of graded algebra automorphisms of a skew polynomial ring \(A:=k_{p_{ij}}[x_1,\cdots,x_n]\). Then the fixed subring A G has finite global dimension if and only if G is generated by quasi-reflections. In this case the fixed subring A G is isomorphic to a skew polynomial ring with possibly different p ij ’s. A version of the theorem is proved also for abelian groups acting on general quantum polynomial rings.  相似文献   

9.
The article is devoted to the theory of elliptic functions of level n. An elliptic function of level n determines a Hirzebruch genus called an elliptic genus of level n. Elliptic functions of level n are also of interest because they are solutions of the Hirzebruch functional equations. The elliptic function of level 2 is the Jacobi elliptic sine function, which determines the famous Ochanine–Witten genus. It is the exponential of the universal formal group of the form F(u, v) = (u2 ? v2)/(uB(v) ? vB(u)), B(0) = 1. The elliptic function of level 3 is the exponential of the universal formal group of the form F(u, v) = (u2A(v) ? v2A(u))/(uA(v)2 ? vA(u)2), A(0) = 1, A″(0) = 0. In the present study we show that the elliptic function of level 4 is the exponential of the universal formal group of the form F(u, v) = (u2A(v) ? v2A(u))/(uB(v) ? vB(u)), where A(0) = B(0) = 1 and for B′(0) = A″(0) = 0, A′(0) = A1, and B″(0) = 2B2 the following relation holds: (2B(u) + 3A1u)2 = 4A(u)3 ? (3A12 ? 8B2)u2A(u)2. To prove this result, we express the elliptic function of level 4 in terms of the Weierstrass elliptic functions.  相似文献   

10.
This paper studies heat equation with variable exponent u t = Δu + up(x) + u q in ? N × (0, T), where p(x) is a nonnegative continuous, bounded function, 0 < p? = inf p(x) ≤ p(x) ≤ sup p(x) = p+. It is easy to understand for the problem that all nontrivial nonnegative solutions must be global if and only if max {p+, q} ≤ 1. Based on the interaction between the two sources with fixed and variable exponents in the model, some Fujita type conditions are determined that that all nontrivial nonnegative solutions blow up in finite time if 0 < q ≤ 1 with p+ > 1, or 1 < q < 1 + \(\frac{2}{N}\). In addition, if q > 1 + \(\frac{2}{N}\), then (i) all solutions blow up in finite time with 0 < p?p+ ≤ 1 + \(\frac{2}{N}\); (ii) there are both global and nonglobal solutions for p? > 1 + \(\frac{2}{N}\); and (iii) there are functions p(x) such that all solutions blow up in finite time, and also functions p(x) such that the problem possesses global solutions when p? < 1 + \(\frac{2}{N}\) < p+.  相似文献   

11.
Let G = (V,E) be a finite connected weighted graph, and assume 1 ? α ? p ? q. In this paper, we consider the p-th Yamabe type equation ―?pu+huq―1 = λfuα―1 on G, where ?p is the p-th discrete graph Laplacian, h < 0 and f > 0 are real functions defined on all vertices of G. Instead of H. Ge’s approach [Proc. Amer. Math. Soc., 2018, 146(5): 2219–2224], we adopt a new approach, and prove that the above equation always has a positive solution u > 0 for some constant λ ∈ ?. In particular, when q = p, our result generalizes Ge’s main theorem from the case of α ? p > 1 to the case of 1 ? α ? p, It is interesting that our new approach can also work in the case of α ? p > 1.  相似文献   

12.
We consider the Cauchy problem for the nonlinear differential equation
$$\varepsilon \frac{{du}}{{dx}} = f(x,u),u(0,\varepsilon ) = R_0 ,$$
where ? > 0 is a small parameter, f(x, u) ∈ C ([0, d] × ?), R 0 > 0, and the following conditions are satisfied: f(x, u) = x ? u p + O(x 2 + |xu| + |u|p+1) as x, u → 0, where p ∈ ? \ {1} f(x, 0) > 0 for x > 0; f u 2(x, u) < 0 for (x, u) ∈ [0, d] × (0, + ∞); Σ 0 +∞ f u 2(x, u) du = ?∞. We construct three asymptotic expansions (external, internal, and intermediate) and prove that the matched asymptotic expansion approximates the solution uniformly on the entire interval [0, d].
  相似文献   

13.
For a real solution (u, p) to the Euler stationary equations for an ideal fluid, we derive an infinite series of the orthogonality relations that equate some linear combinations of mth degree integral momenta of the functions uiuj and p to zero (m = 0, 1,... ). In particular, the zeroth degree orthogonality relations state that the components ui of the velocity field are L2-orthogonal to each other and have coincident L2-norms. Orthogonality relations of degree m are valid for a solution belonging to a weighted Sobolev space with the weight depending on m.  相似文献   

14.
We investigate equations of the form D t u = Δu + ξ? u for an unknown function u(t, x), t ∈ ?, xX, where D t u = a 0(u, t) + Σ k=1 r a k (t, u)? t k u, Δ is the Laplace-Beltrami operator on a Riemannian manifold X, and ξ is a smooth vector field on X. More exactly, we study morphisms from this equation within the category PDE of partial differential equations, which was introduced by the author earlier. We restrict ourselves to morphisms of a special form—the so-called geometric morphisms, which are given by maps of X to other smooth manifolds (of the same or smaller dimension). It is shown that a map f: XY defines a morphism from the equation D t u = Δu + ξ? u if and only if, for some vector field Ξ and a metric on Y, the equality (Δ + ξ?)f*v = f*(Δ + Ξ?)v holds for any smooth function v: Y → ?. In this case, the quotient equation is D t v = Δv + Ξ?v for an unknown function v(t, y), yY. It is also shown that, if a map f: XY is a locally trivial bundle, then f defines a morphism from the equation D t u = Δu if and only if fibers of f are parallel and, for any path γ on Y, the expansion factor of a fiber translated along the horizontal lift γ to X depends on γ only.  相似文献   

15.
We show that there exist saddle solutions of the nonlinear elliptic equation involving the p-Laplacian, p > 2, -Δ p u = f(u) in R2m for all dimensions satisfying 2mp, by using sub-supersolution method. The existence of saddle solutions of the above problem was known only in dimensions 2m ≥ 2p.  相似文献   

16.
Let φ 1 and φ 2 be holomorphic self-maps of the unit polydisk \(\mathbb{D}^N\), and let u 1 and u 2 be holomorphic functions on \(\mathbb{D}^N\). We characterize the boundedness and compactness of the difference of weighted composition operators W φ1, u1 and W φ2, u2 from the weighted Bergman space \(A_{\vec \alpha }^p\), 0 < p < ∞, \(\vec \alpha = \left( {\alpha _1 , \ldots ,\alpha _{\rm N} } \right)\), α j > ?1, j = 1,..., N, to the weighted-type space H υ of holomorphic functions on the unit polydisk \(\mathbb{D}^N\) in terms of inducing symbols φ 1, φ 2, u 1, and u 2.  相似文献   

17.
Let u =(uh, u3) be a smooth solution of the 3-D Navier-Stokes equations in R3× [0, T). It was proved that if u3 ∈ L∞(0, T;˙B-1+3/p p,q(R3)) for 3 p, q ∞ and uh∈ L∞(0, T; BMO-1(R3)) with uh(T) ∈ VMO-1(R3), then u can be extended beyond T. This result generalizes the recent result proved by Gallagher et al.(2016), which requires u ∈ L∞(0, T;˙B-1+3/pp,q(R3)). Our proof is based on a new interior regularity criterion in terms of one velocity component, which is independent of interest.  相似文献   

18.
For any prime number p let Ωp be the p-adic counterpart of the complex numbers C. In this paper we investigate the class of p-adic UHF Banach algebras. A p-adic UHF Banach algebra is any unital p-adic Banach algebra A of the form \(A = \overline {U{M_n}} \), where (Mn) is an increasing sequence of p-adic Banach subalgebras of M such that each Mn is generated over Ωp by an algebraic system of matrix units {e ij ( n) | 1 ≤ i, jpn }. The main result is that the supernatural number associated to a p-adic TUHF Banach algebra is an invariant of the algebra.  相似文献   

19.
The Dirichlet problem for the degenerate and singular parabolic p(x)-Laplace equation with one spatial variable is considered. We prove the existence of the unique weak solution such that the derivatives u t and u x of a solution u belong to \({L_{\infty}}\). Moreover for the singular case we prove the existence of the strong solution i.e. such that u t , u x and u xx belong to \({L_{\infty}}\).  相似文献   

20.
We explicitly construct polynomial vector fields Lk, k = 0, 1, 2, 3, 4, 6, on the complex linear space C6 with coordinates X = (x2, x3, x4) and Z = (z4, z5, z6). The fields Lk are linearly independent outside their discriminant variety Δ ? C6 and are tangent to this variety. We describe a polynomial Lie algebra of the fields Lk and the structure of the polynomial ring C[X,Z] as a graded module with two generators x2 and z4 over this algebra. The fields L1 and L3 commute. Any polynomial P(X,Z) ∈ C[X,Z] determines a hyperelliptic function P(X,Z)(u1, u3) of genus 2, where u1 and u3 are the coordinates of trajectories of the fields L1 and L3. The function 2x2(u1, u3) is a two-zone solution of the Korteweg–de Vries hierarchy, and ?z4(u1, u3)/?u1 = ?x2(u1, u3)/?u3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号