首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
We show that the heat semigroup is well defined on the Banach space \({\mathcal{X}_{m,\gamma} = \{ \psi:\Omega_m \to \mathbb{R} ;\; |x|^{\gamma +2m}(\prod_{i=1}^m x_i)^{-1}\psi(x) \in L^\infty(\Omega_m)\},}\) \({0 < \gamma < N}\), where \({\Omega_m=\{(x_1,\, x_2,\, \ldots,\, x_N) \in \mathbb{R}^{N};\; x_i > 0,\, 1\leq i\leq m\},}\) \({1\leq m\leq N}\). We then investigate the large time behavior of solutions of the heat equation \({u_{t}-\Delta u=0}\) for t > 0 and \({x \in \Omega_m.}\) Using certain notions from dynamical systems, we show that the large time behavior is related to the spatial asymptotic behavior of its initial value. Since the space \({\mathcal{X}_{m, \gamma}}\) contains highly singular initial data, which can be extended to all of \({\mathbb{R}^{N}}\) by antisymmetry, we also obtain new results on the complexity in the asymptotic behavior of solutions for the heat equation on the whole space.  相似文献   

2.
Let \({L_{w}}{:=-w^{-1}{\rm div}(A\nabla)}\) be the degenerate elliptic operator on the Euclidean space \({{\mathbb{R}^{n}}}\), where w is a Muckenhoupt \({A_{2}({\mathbb{R}^{n}})}\) weight. In this article, the authors establish the Riesz transform characterization of the Hardy space \({H^{p}_{L_{w}}({\mathbb{R}}^{n})}\) associated with Lw, for \({w \in A_{q}({\mathbb{R}}^{n}) \cap RH_{\frac{n}{n-2}}({\mathbb{R}^{n}})}\) with \({n \geq 3}\), \({q \in [1,2]}\) and \({p \in (q(\frac{1}{r}+\frac{q-1}{2}+\frac{1}{n})^{-1},1]}\) if, for some \({r \in (1,\,2]}\), \({{\{tL_w e^{-tL_w}\}}_{t\geq 0}}\) satisfies the weighted \({L^{r}-L^{2}}\) full off-diagonal estimates.  相似文献   

3.
It is known that the maximal operator \({\sigma^{\kappa,*}(f)} := sup_{n \in \mathbf{P}}{|{\sigma}_{n}^{\kappa} (f)|}\) is bounded from the dyadic Hardy space \({H_{p}}\) into the space \({L_{p}}\) for \({p > 2/3}\) [6]. Moreover, Goginava and Nagy showed that \({\sigma^{\kappa,*}}\) is not bounded from the Hardy space \({H_{2/3}}\) to the space \({L_{2/3}}\) [9]. The main aim of this paper is to investigate the case \({0 < p < 2/3}\). We show that the weighted maximal operator \({\tilde{\sigma}^{\kappa,*,p}(f) :=sup_{n\in \mathbf{P}} \frac{|{\sigma}_{n}^\kappa (f)|}{n^{2/p-3}}}\), is bounded from the Hardy space \({H_{p}}\) into the space \({L_{p}}\) for any \({0 < p < 2/3}\). With its aid we provide a necessary and sufficient condition for the convergence of Walsh–Kaczmarz–Marcinkiewicz means in terms of modulus of continuity on the Hardy space \({H_p}\), and prove a strong convergence theorem for this means.  相似文献   

4.
We give a sufficient and necessary condition for an analytic function f(z) on the unit disc \({\mathbb{D}}\) with Hadamard gaps, that is, for \({f(z)=\sum_{k=1}^{\infty}a_kz^{n_k}}\) where \({n_{k+1}/n_k\geq\lambda >1 }\) for all \({k\in \mathbb{N}}\), to belong to the weighted-type space \({ H_\mu^{\infty}}\), under some condition posed on the weight function μ. We can define the corresponding little weighted-type space \({H_{\mu,0}^{\infty}}\) and give a criterion for functions to belong to it.  相似文献   

5.
In this work, we consider the second-order discontinuous equation in the real line,
$$u^{\prime \prime}(t)-ku(t) = f( t, u(t), u^{\prime}(t)), \quad a.e.t \in \mathbb {R},$$
with \({k > 0}\) and \({f : \mathbb{R}^{3} \rightarrow \mathbb{R}}\) an \({L^{1}}\)-Carathéodory function. The existence of homoclinic solutions in presence of not necessarily ordered lower and upper solutions is proved, without periodicity assumptions or asymptotic conditions. Some applications to Duffing-like equations are presented in last section.
  相似文献   

6.
In this paper, we will prove (resp. study) the Baire generic validity of the upper-Hölder (resp. iso-Hölder) mixed wavelet leaders multifractal formalism on a product of two critical Besov spaces \(B_{t_{1}}^{\frac{m}{t_{1}},q_{1}}(\mathbb {R}^m) \times B_{t_{2}}^{\frac{m}{t_{2}},q_{2}}(\mathbb {R}^m)\), for \(t_1,t_2>0\), \(q_1 \le 1\) and \(q_2 \le 1\). Contrary to product spaces \(B_{t_{1}}^{s_{1},\infty }(\mathbb {R}^m) \times B_{t_{2}}^{s_{2},\infty }(\mathbb {R}^m) \) with \(s_{1} > \frac{m}{t_{1}}\) and \(s_{2} >\frac{m}{t_{2}}\) (Ben Slimane in Mediterr J Math, 13(4):1513–1533, 2016) and \((B_{t_{1}}^{s_{1},\infty }(\mathbb {R}^m) \cap C^{\gamma _{1}}(\mathbb {R}^m)) \times (B_{t_{2}}^{s_{2},\infty }(\mathbb {R}^m) \cap C^{\gamma _{2}}(\mathbb {R}^m)\) with \(0<\gamma _{1}<s_{1}<\frac{m}{t_{1}}\) and \(0<\gamma _{2}<s_{2}<\frac{m}{t_{2}}\) (Ben Abid et al. in Mediterr J Math, 13(6):5093–5118, 2016), all pairs of functions in the obtained generic set are not uniform Hölder. Nevertheless, the characterization of the upper bound of the Hölder exponent by decay conditions of local wavelet leaders suffices for our study.  相似文献   

7.
We investigate Weyl type asymptotics of functional-difference operators associated to mirror curves of special del Pezzo Calabi-Yau threefolds. These operators are \({H(\zeta) = U + U^{-1} + V + \zeta V^{-1}}\) and \({H_{m,n} = U + V + q^{-mn}U^{-m}V^{-n}}\), where \({U}\) and \({V}\) are self-adjoint Weyl operators satisfying \({UV = q^{2}VU}\) with \({q = {\rm e}^{{\rm i}\pi b^{2}}}\), \({b > 0}\) and \({\zeta > 0}\), \({m, n \in \mathbb{N}}\). We prove that \({H(\zeta)}\) and \({H_{m,n}}\) are self-adjoint operators with purely discrete spectrum on \({L^{2}(\mathbb{R})}\). Using the coherent state transform we find the asymptotical behaviour for the Riesz mean \({\sum_{j\ge 1}(\lambda - \lambda_{j})_{+}}\) as \({\lambda \to \infty}\) and prove the Weyl law for the eigenvalue counting function \({N(\lambda)}\) for these operators, which imply that their inverses are of trace class.  相似文献   

8.
We establish the classification of minimal mass blow-up solutions of the \({L^{2}}\) critical inhomogeneous nonlinear Schrödinger equation
$$i\partial_t u + \Delta u + |x|^{-b}|u|^{\frac{4-2b}{N}}u = 0,$$
thereby extending the celebrated result of Merle (Duke Math J 69(2):427–454, 1993) from the classic case \({b=0}\) to the case \({0< b< {\rm min} \{2,N\} }\), in any dimension \({N \geqslant 1}\).
  相似文献   

9.
The Cesàro operator C, when acting in the classical growth Banach spaces \({A^{-\gamma}}\) and \({A_0^{-\gamma}}\), for \({\gamma} > 0\), of analytic functions on \({\mathbb{D}}\), is investigated. Based on a detailed knowledge of their spectra (due to A. Aleman and A.-M. Persson) we are able to determine the norms of these operators precisely. It is then possible to characterize the mean ergodic and related properties of C acting in these spaces. In addition, we determine the largest Banach space of analytic functions on \({\mathbb{D}}\) which C maps into \({A^{-\gamma}}\) (resp. into \({A_0^{-\gamma}}\)); this optimal domain space always contains \({A^{-\gamma}}\) (resp. \({A_0^{-\gamma}}\)) as a proper subspace.  相似文献   

10.
In the unit cone\({\mathcal{C} := \{(x, y, z)} \in {\mathbb R}^{3} : {x}^{2} + {y}^{2} < {z}^{2}, {z} > {0}\}\) we establish a geometric maximum principle for H-surfaces, where its mean curvature \({H = H(x, y, z)}\) is optimally bounded. Consequently, these surfaces cannot touch the conical boundary \({\partial \mathcal{C}}\) at interior points and have to approach \({\partial \mathcal{C}}\) transversally. By a nonlinear continuity method, we then solve the Dirichlet problem of the H-surface equation in central projection for Jordan-domains \({\Omega}\) which are strictly convex in the following sense: On its whole boundary \({\partial \mathcal{C}(\Omega)}\) their associate cone \({\mathcal{C}(\Omega) := \{(rx, ry, r) \in {\mathbb R}^{3} : (x, y) \in \Omega, r \in (0,+\infty)}\}\) admits rotated unit cones \({O \circ \mathcal{C}}\) as solids of support, where \({O \in {\mathbb R}^{3\times3}}\) represents a rotation in the Euclidean space. Thus we construct the unique H-surface with one-to-one central projection onto these domains \({\Omega}\) bounding a given Jordan-contour \({\Gamma \subset \mathcal{C} \backslash \{0\}}\) with one-toone central projection.  相似文献   

11.
Let \({\mathcal{P} \subset \mathbb{R}^{d}}\) and \({\mathcal{Q} \subset \mathbb{R}^{e}}\) be integral convex polytopes of dimension d and e which contain the origin of \({\mathbb{R}^{d}}\) and \({\mathbb{R}^{e}}\), respectively. We say that an integral convex polytope \({\mathcal{P}\subset \mathbb{R}^{d}}\) possesses the integer decomposition property if, for each \({n\geq1}\) and for each \({\gamma \in n\mathcal{P}\cap\mathbb{Z}^{d}}\), there exist \({\gamma^{(1)}, . . . , \gamma^{(n)}}\) belonging to \({\mathcal{P}\cap\mathbb{Z}^{d}}\) such that \({\gamma = \gamma^{(1)} +. . .+\gamma^{(n)}}\). In the present paper, under some assumptions, the necessary and sufficient condition for the free sum of \({\mathcal{P}}\) and \({\mathcal{Q}}\) to possess the integer decomposition property will be presented.  相似文献   

12.
Let \({C^*_r(\mathbb{F}_{\infty})}\) be the reduced C*-algebra of the free group on infinitely many generators. Say that \({a, b \in C^*_r(\mathbb{F}_{\infty})_{SA}}\). Then \({a}\) is majorized by \({b}\) if and only if \({a \in \overline{Conv(U(b))}.}\) In particular, \({\tau(b)1 \in \overline{Conv(U(b))}.}\) Moreover, in the above results, we provide uniform bounds for the number of unitary conjugates needed for a given approximation. In the above, \({Conv(U(b))}\) is the convex hull of the unitary orbit of \({b}\) in \({C^*_r(\mathbb{F}_{\infty})}\).  相似文献   

13.
Let \({\varphi}\) be a Musielak–Orlicz function satisfying that, for any \({(x,\,t)\in{\mathbb R}^n \times [0, \infty)}\), \({\varphi(\cdot,\,t)}\) belongs to the Muckenhoupt weight class \({A_\infty({\mathbb R}^n)}\) with the critical weight exponent \({q(\varphi) \in [1,\,\infty)}\) and \({\varphi(x,\,\cdot)}\) is an Orlicz function with uniformly lower type \({p^{-}_{\varphi}}\) and uniformly upper type \({p^+_\varphi}\) satisfying \({q(\varphi) < p^{-}_{\varphi}\le p^{+}_{\varphi} < \infty}\). In this paper, the author obtains a sharp weighted bound involving \({A_\infty}\) constant for the Hardy–Littlewood maximal operator on the Musielak–Orlicz space \({L^{\varphi}}\). This result recovers the known sharp weighted estimate established by Hytönen et al. in [J. Funct. Anal. 263:3883–3899, 2012].  相似文献   

14.
The paper is devoted to sharp weak type \((\infty ,\infty )\) estimates for \({\mathcal {H}}^{\mathbb {T}}\) and \({\mathcal {H}}^{\mathbb {R}}\), the Hilbert transforms on the circle and real line, respectively. Specifically, it is proved that
$$\begin{aligned} \left\| {\mathcal {H}}^{\mathbb {T}}f\right\| _{W({\mathbb {T}})}\le \Vert f\Vert _{L^\infty ({\mathbb {T}})} \end{aligned}$$
and
$$\begin{aligned} \left\| {\mathcal {H}}^{\mathbb {R}}f\right\| _{W({\mathbb {R}})}\le \Vert f\Vert _{L^\infty ({\mathbb {R}})}, \end{aligned}$$
where \(W({\mathbb {T}})\) and \(W({\mathbb {R}})\) stand for the weak-\(L^\infty \) spaces introduced by Bennett, DeVore and Sharpley. In both estimates, the constant \(1\) on the right is shown to be the best possible.
  相似文献   

15.
We prove a Beurling-Blecher-Labuschagne theorem for \({H^\infty}\)-invariant spaces of \({L^p(\mathcal{M},\tau)}\) when \({0 < p \leq\infty}\), using Arveson’s non-commutative Hardy space \({H^\infty}\) in relation to a von Neumann algebra \({\mathcal{M}}\) with a semifinite, faithful, normal tracial weight \({\tau}\). Using the main result, we are able to completely characterize all \({H^\infty}\)-invariant subspaces of \({L^p(\mathcal{M} \rtimes_\alpha \mathbb{Z},\tau)}\), where \({\mathcal{M} \rtimes_\alpha \mathbb{Z} }\) is a crossed product of a semifinite von Neumann algebra \({\mathcal{M}}\) by the integer group \({\mathbb{Z}}\), and \({H^\infty}\) is a non-selfadjoint crossed product of \({\mathcal{M}}\) by \({\mathbb{Z}^+}\). As an example, we characterize all \({H^\infty}\)-invariant subspaces of the Schatten p-class \({S^p(\mathcal{H})}\), where \({H^\infty}\) is the lower triangular subalgebra of \({B(\mathcal{H})}\), for each \({0 < p \leq\infty}\).  相似文献   

16.
The Hardy–Littlewood inequalities for m-linear forms have their origin with the seminal paper of Hardy and Littlewood (Q J Math 5:241–254, 1934). Nowadays it has been extensively investigated and many authors are looking for the optimal estimates of the constants involved. For \(m<p\le 2m\) it asserts that there is a constant \(D_{m,p}^{\mathbb {K}}\ge 1\) such that
$$\begin{aligned} \left( \sum _{j_{1},\ldots ,j_{m}=1}^{n}\left| T(e_{j_{1}},\ldots ,e_{j_{m} })\right| ^{\frac{p}{p-m}}\right) ^{\frac{p-m}{p}}\le D_{m,p} ^{\mathbb {K}}\left\| T\right\| , \end{aligned}$$
for all m-linear forms \(T:\ell _{p}^{n}\times \cdots \times \ell _{p} ^{n}\rightarrow \mathbb {K}=\mathbb {R}\) or \(\mathbb {C}\) and all positive integers n. Using a regularity principle recently proved by Pellegrino, Santos, Serrano and Teixeira, we present a straightforward proof of the Hardy–Littlewood inequality and show that:
  1. (1)
    If \(m<p_{1}\le p_{2}\le 2m\) then \(D_{m,p_{1}}^{\mathbb {K}}\le D_{m,p_{2}}^{\mathbb {K}}\);
     
  2. (2)
    \(D_{m,p}^{\mathbb {K}}\le D_{m-1,p}^{\mathbb {K}}\) whenever \(m<p\le 2\left( m-1\right) \) for all \(m\ge 3\).
     
  相似文献   

17.
Let \({C={\rm inf} (k/n)\sum_{i=1}^n x_i(x_{i+1}+\cdots+x_{i+k})^{-1}}\), where the infimum is taken over all pairs of integers \({n\geq k\geq 1}\) and all positive \({x_1,\ldots,x_n}\), \({x_{n+i}=x_i}\). We prove that \({\ln 2 \leq C < 0.9305}\). In the definition of the constant C, the operation \({{\rm inf}_{k}\, {\rm inf}_{n}\, {\rm inf}_{x}}\) can be replaced by \({{\rm lim}_{k \to \infty}\, {\rm lim}_{n \to \infty} {\rm inf}_{x}}\).  相似文献   

18.
Given a C 2 semi-algebraic mapping \({F} : {\mathbb{R}^N \rightarrow \mathbb{R}^p}\), we consider its restriction to \({W \hookrightarrow \mathbb{R^{N}}}\) an embedded closed semi-algebraic manifold of dimension \({n-1 \geq p \geq 2}\) and introduce sufficient conditions for the existence of a fibration structure (generalized open book structure) induced by the projection \({\frac{F}{\Vert F \Vert}:W{\setminus} F^{-1}(0) \to S^{p-1}}\). Moreover, we show that the well known local and global Milnor fibrations, in the real and complex settings, follow as a byproduct by considering W as spheres of small and big radii, respectively. Furthermore, we consider the composition mapping of F with the canonical projection \({\pi: \mathbb{R}^{p} \to \mathbb{R}^{p-1}}\) and prove that the fibers of \({\frac{F}{\Vert F \Vert}}\) and \({\frac{\pi \circ F}{\Vert \pi \circ F \Vert}}\) are homotopy equivalent. We also show several formulae relating the Euler characteristics of the fiber of the projection \({\frac{F}{\Vert F \Vert}}\) and \({W \cap F^{-1}(0)}\). Similar formulae are proved for mappings obtained after composition of F with canonical projections.  相似文献   

19.
In this study, we first calculate the polar moment of inertia of orbit curves under one-parameter planar motion in the generalized complex plane \({{\mathbb{C}_p}}\) and then give the Holditch-type theorem for \({{\mathbb{C}_p}}\): When the fixed points \({X}\) and \({Y}\) on the moving plane \({{\mathbb{K}_p} \subset {\mathbb{C}_p}}\) trace the same curve \({k}\) with the polar moment of inertia \({{T_X}}\), the different point \({Z}\) on this line segment \({XY}\) traces another curve \({{k_Z}}\) with the polar moment of inertia \({{T_Z}}\) during the one-parameter planar motion in the fixed plane \({{\mathbb{K}'_p} \subset {\mathbb{C}_p}}\). Thus, we obtain that the difference between the polar moments of inertia of these curves \({( {{T_Z} - {T_X}} )}\) depends on the only the \({p}\)-distances of this points and \({p}\)-rotation angle of the motion, \({{T_X} - {T_Z} = {\delta _p}ab.}\)  相似文献   

20.
The aim of this work is to estimate sums involving P(n), the largest prime factor of an integer \({n \geqq 2}\) under digital constraints \({{f(P(n)) \equiv a}{\rm mod} b}\), for every \({a \in \mathbb{Z}}\) and an integer \({b \geqq 2}\) where f is a strongly q-additive function with integer values (i.e. \({f(aq^j + b) = f(a) + f(b)}\), with \({(a, b, j) \in \mathbb{N}^3}\), \({{0 \leqq b} < q^j}\)). We also estimate the cardinality of the set \({\{{n \leqq x, f(P(n) + c)} \equiv {a {\rm mod} b}, P(n) \equiv l {\rm mod} k\}}\), where \({c \in \mathbb{Z}}\), \({k \geqq 2}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号