首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper studies the finite element method for some nonlinear hyperbolic partial differential equations with memory and dampling terms.A Crank-Nicolson approximation for this kind of equations is presented.By using the elliptic Ritz-Volterra projection,the analysis of the error estimates for the finite element numerical solutions and the optimal H1-norm error estimate are demonstrated.  相似文献   

2.
A least‐squares mixed finite element (LSMFE) schemes are formulated to solve the 1D regularized long wave (RLW) equations and the convergence is discussed. The L2 error estimates of LSMFE methods for RLW equations under the standard regularity assumption on the finite element partition are given.© 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

3.
We derive new a priori error estimates for linear parabolic equations with discontinuous coefficients. Due to low global regularity of the solutions the error analysis of the standard finite element method for parabolic problems is difficult to adopt for parabolic interface problems. A finite element procedure is, therefore, proposed and analyzed in this paper. We are able to show that the standard energy technique of finite element method for non-interface parabolic problems can be extended to parabolic interface problems if we allow interface triangles to be curved triangles. Optimal pointwise-in-time error estimates in the L 2(Ω) and H 1(Ω) norms are shown to hold for the semidiscrete scheme. A fully discrete scheme based on backward Euler method is analyzed and pointwise-in-time error estimates are derived. The interfaces are assumed to be arbitrary shape but smooth for our purpose.  相似文献   

4.
Summary The finite volume element method (FVE) is a discretization technique for partial differential equations. It uses a volume integral formulation of the problem with a finite partitioning set of volumes to discretize the equations, then restricts the admissible functions to a finite element space to discretize the solution. this paper develops discretization error estimates for general selfadjoint elliptic boundary value problems with FVE based on triangulations with linear finite element spaces and a general type of control volume. We establishO(h) estimates of the error in a discreteH 1 semi-norm. Under an additional assumption of local uniformity of the triangulation the estimate is improved toO(h 2). Results on the effects of numerical integration are also included.This research was sponsored in part by the Air Force Office of Scientific Research under grant number AFOSR-86-0126 and the National Science Foundation under grant number DMS-8704169. This work was performed while the author was at the University of Colorado at Denver  相似文献   

5.
This paper is devoted to study the Crouzeix-Raviart (C-R) type nonconforming linear triangular finite element method (FEM) for the nonstationary Navier-Stokes equations on anisotropic meshes. By intro- ducing auxiliary finite element spaces, the error estimates for the velocity in the L2-norm and energy norm, as well as for the pressure in the L2-norm are derived.  相似文献   

6.
The main objective of this paper is to present a new rectangular nonconforming finite element scheme with the second order convergence behavior for approximation of Maxwell’s equations.Then the corresponding optimal error estimates are derived.The difficulty in construction of this finite element scheme is how to choose a compatible pair of degrees of freedom and shape function space so as to make the consistency error due to the nonconformity of the element being of order O(h 3 ) ,properly one order higher than that of its interpolation error O(h 2 ) in the broken energy norm,where h is the subdivision parameter tending to zero.  相似文献   

7.
该文将一个低阶Crouzeix-Raviart型非协调三角形元应用到非定常Navier-Stokes方程,给出了其质量集中有限元逼近格式.在不需要传统Ritz-Volterra投影下,通过引入两个辅助有限元空间对边界进行估计的技巧,在各向异性网格下导出了速度的L~2模和能量模及压力的L~2模的误差估计.  相似文献   

8.
The main aim of this paper is to study the error estimates of a rectangular nonconforming finite element for the stationary Navier-Stokes equations under anisotropic meshes. That is, the nonconforming rectangular element is taken as approximation space for the velocity and the piecewise constant element for the pressure. The convergence analysis is presented and the optimal error estimates both in a broken H1-norm for the velocity and in an L2-norm for the pressure are derived on anisotropic meshes.  相似文献   

9.
研究了强阻尼波动方程的H1-Galerkin混合有限元方法的超收敛性. 借助于协调线性三角形元已有的分析估计式, 直接利用插值算子代替原始变量 u 的 Ritz 投影和应力变量 p 的 Ritz-Volterra 投影,对半离散和全离散格式, 得到了u在 H1(Ω) 模和 p 在 H(div;Ω) 模意义下比以往文献高一阶的超逼近和超收敛结果.  相似文献   

10.
The purpose of this paper is to study the effect of the numerical quadrature on the finite element approximation to the exact solution of elliptic equations with discontinuous coefficients. Due to low global regularity of the solution, it seems difficult to achieve optimal order of convergence with classical finite element methods [Z. Chen, J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math. 79 (1998) 175-202]. We derive error estimates in finite element method with quadrature for elliptic interface problems in a two-dimensional convex polygonal domain. Optimal order error estimates in L2 and H1 norms are shown to hold even if the regularity of the solution is low on the whole domain. Finally, numerical experiment for two dimensional test problem is presented in support of our theoretical findings.  相似文献   

11.
解Poisson方程的基于应力佳点的双二次元有限体积法   总被引:2,自引:0,他引:2  
本文提出了求解Poisson方程的一种新的双二次元有限体积法.新方法与通常的双二次元有限体积法作对偶剖分的方式不同,其主要特点是取应力佳点(Gauss点)作为对偶单元的节点,试探函数空间取双二次有限元空间,检验函数空间取相应于对偶剖分的分片常数函数空间.证明了新方法具有最优的H~1模和L~2模误差估计,讨论了在应力佳点数值梯度的超收敛性估计,并通过数值实验验证了理论分析的结果.  相似文献   

12.
Maxwell方程组棱元离散系统的快速算法和自适应方法是当前计算电磁场中的研究热点和难点. 首先, 针对H(curl)椭圆方程组的棱元离散系统, 通过建立棱元空间的稳定性分解, 设计了相应的快速迭代法和高效预条件子, 并且证明了迭代算法的收敛率和预条件子的条件数均不依赖于模型参数和网格规模. 其次, 针对时谐Maxwell方程组的棱有限元方法, 利用离散的Helmholtz分解, 连续散度为零函数对离散散度为零函数的逼近性和对偶论证, 获得了在L2和H(curl)范数下的拟最优误差估计. 进而设计和分析了相应的两网格法. 最后, 分别针对变系数H(curl)椭圆方程组和不定时谐Maxwell方程组, 考虑了一种不需要标记振荡项和加密单元不需要满足“内节点” 性质的自适应棱有限元法(AEFEM), 并证明了AEFEM的收敛性. 进一步, 当初始网格和Dörfler标记策略参数满足一定的假设条件时, 利用AEFEM的收敛性、误差的整体下界和局部上界估计, 证明了AEFEM的拟最优复杂性.  相似文献   

13.
In this article, a coupling method of new mixed finite element (MFE) and finite element (FE) is proposed and analyzed for fourth-order parabolic partial differential equation. First, the fourth-order parabolic equation is split into the coupled system of second-order equations. Then, an equation is solved by finite element method, the other equation is approximated by the new mixed finite element method, whose flux belongs to the square integrable space replacing the classical H(div;Ω) space. The stability for fully discrete scheme is derived, and both semi-discrete and fully discrete error estimates are obtained. Moreover, the optimal a priori error estimates in L 2 and H 1-norm for both the scalar unknown u and the diffusion term γ and a priori error estimate in (L 2)2-norm for its flux σ are derived. Finally, some numerical results are provided to validate our theoretical analysis.  相似文献   

14.
A nonconforming H^1-Calerkin mixed finite element method is analyzed for Sobolev equations on anisotropic meshes. The error estimates are obtained without using Ritz-Volterra projection.  相似文献   

15.
A finite volume method based on stabilized finite element for the two‐dimensional nonstationary Navier–Stokes equations is investigated in this work. As in stabilized finite element method, macroelement condition is introduced for constructing the local stabilized formulation of the nonstationary Navier–Stokes equations. Moreover, for P1 ? P0 element, the H1 error estimate of optimal order for finite volume solution (uh,ph) is analyzed. And, a uniform H1 error estimate of optimal order for finite volume solution (uh, ph) is also obtained if the uniqueness condition is satisfied. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

16.
We study new a posteriori error estimates of the mixed finite element methods for general optimal control problems governed by nonlinear parabolic equations. The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a posteriori error estimates in L(J; L2Ω)-norm and L2(J; L2Ω)-norm for both the state, the co-state and the control approximation. Such estimates, which seem to be new, are an important step towards developing a reliable adaptive mixed finite element approximation for optimal control problems. Finally, the performance of the posteriori error estimators is assessed by two numerical examples.  相似文献   

17.
On the basis of rectangular partition and bilinear interpolation, this article presents alternating direction finite volume element methods for two dimensional parabolic partial differential equations and gives three computational schemes, one is analogous to Douglas finite difference scheme with second order splitting error, the second has third order splitting error, and the third is an extended locally one dimensional scheme. Optimal L2 norm or H1 semi‐norm error estimates are obtained for these schemes. Finally, two numerical examples illustrate the effectiveness of the schemes. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

18.
In this article, we investigate the L(L2) ‐error estimates of the semidiscrete expanded mixed finite element methods for quadratic optimal control problems governed by hyperbolic integrodifferential equations. The state and the costate are discretized by the order k Raviart‐Thomas mixed finite element spaces, and the control is approximated by piecewise polynomials of order k(k ≥ 0). We derive error estimates for both the state and the control approximation. Numerical experiments are presented to test the theoretical results. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

19.
We derive stability properties and error estimates for the finite element method when used to approximate heat flow in a fluid enclosed by a solid medium. The coupled Navier Stokes system involves the Boussinesq equations in the fluid-filled cavity linked through an interface with heat conduction in the solid enclosing the fluid. As we assume no extra regularity then can be shown to hold under mild restriction on the data (at least over a small time interval in R 3), we focus primarily on low order finite element spaces.  相似文献   

20.
We study a discontinuous Galerkin finite element method (DGFEM) for the Stokes equations with a weak stabilization of the viscous term. We prove that, as the stabilization parameter γ tends to infinity, the solution converges at speed γ?1 to the solution of some stable and well‐known nonconforming finite element methods (NCFEM) for the Stokes equations. In addition, we show that an a posteriori error estimator for the DGFEM‐solution based on the reconstruction of a locally conservative H(div, Ω)‐tensor tends at the same speed to a classical a posteriori error estimator for the NCFEM‐solution. These results can be used to affirm the robustness of the DGFEM‐method and also underline the close relationship between the two approaches. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号