首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Team Orienteering Problem (TOP) is the generalization to the case of multiple tours of the Orienteering Problem, known also as Selective Traveling Salesman Problem. A set of potential customers is available and a profit is collected from the visit to each customer. A fleet of vehicles is available to visit the customers, within a given time limit. The profit of a customer can be collected by one vehicle at most. The objective is to identify the customers which maximize the total collected profit while satisfying the given time limit for each vehicle. We propose two variants of a generalized tabu search algorithm and a variable neighborhood search algorithm for the solution of the TOP and show that each of these algorithms beats the already known heuristics. Computational experiments are made on standard instances.  相似文献   

2.
This paper focuses on vehicle routing problems with profits and addresses the so-called Capacitated Team Orienteering Problem. Given a set of customers with a priori known profits and demands, the objective is to find the subset of customers, for which the collected profit is maximized, and to determine the visiting sequence and assignment to vehicle routes assuming capacity and route duration restrictions. The proposed method adopts a hierarchical bi-level search framework that takes advantage of different search landscapes. At the upper level, the solution space is explored on the basis of the collected profit, using a Filter-and-Fan method and a combination of profit oriented neighborhoods, while at the lower level the routing of customers is optimized in terms of traveling distance via a Variable Neighborhood Descent method. Computational experiments on benchmark data sets illustrate the efficiency and effectiveness of the proposed approach. Compared to existing results, new upper bounds are produced with competitive computational times.  相似文献   

3.
In the capacitated team orienteering problem (CTOP), we are given a set of homogeneous vehicles and a set of customers each with a service demand value and a profit value. A vehicle can get the profit of a customer by satisfying its demand, but the total demand of all customers in its route cannot exceed the vehicle capacity and the length of the route must be within a specified maximum. The problem is to design a set of routes that maximizes the total profit collected by the vehicles. In this article, we propose a new heuristic algorithm for the CTOP using the ejection pool framework with an adaptive strategy and a diversification mechanism based on toggling between two priority rules. Experimental results show that our algorithm can match or improve all the best known results on the standard CTOP benchmark instances proposed by Archetti et al. (2008).  相似文献   

4.
In this paper we simultaneously consider three extensions to the standard Orienteering Problem (OP) to model characteristics that are of practical relevance in planning reconnaissance missions of Unmanned Aerial Vehicles (UAVs). First, travel and recording times are uncertain. Secondly, the information about each target can only be obtained within a predefined time window. Due to the travel and recording time uncertainty, it is also uncertain whether a target can be reached before the end of its time window. Finally, we consider the appearance of new targets during the flight, so-called time-sensitive targets, which need to be visited immediately if possible. We tackle this online stochastic UAV mission planning problem with time windows and time-sensitive targets using a re-planning approach. To this end, we introduce the Maximum Coverage Stochastic Orienteering Problem with Time Windows (MCS-OPTW). It aims at constructing a tour with maximum expected profit of targets that were already known before the flight. Secondly, it directs the planned tour to predefined areas where time-sensitive targets are expected to appear. We have developed a fast heuristic that can be used to re-plan the tour, each time before leaving a target. In our computational experiments we illustrate the benefits of the MCS-OPTW planning approach with respect to balancing the two objectives: the expected profits of foreseen targets, and expected percentage of time-sensitive targets reached on time. We compare it to a deterministic planning approach and show how it deals with uncertainty in travel and recording times and the appearance of time-sensitive targets.  相似文献   

5.
In this paper, we present a branch-and-price algorithm to solve two well-known vehicle routing problems with profits, the Capacitated Team Orienteering Problem and the Capacitated Profitable Tour Problem. A restricted master heuristic is applied at each node of the branch-and-bound tree in order to obtain primal bound values. In spite of its simplicity, the heuristic computes high quality solutions. Several unsolved benchmark instances have been solved to optimality.  相似文献   

6.
The split delivery vehicle routing problem (SDVRP) relaxes routing restrictions forcing unique deliveries to customers and allows multiple vehicles to satisfy customer demand. Split deliveries are used to reduce total fleet cost to meet those customer demands. We provide a detailed survey of the SDVRP literature and define a new constructive algorithm for the SDVRP based on a novel concept called the route angle control measure. We extend this constructive approach to an iterative approach using adaptive memory concepts, and then add a variable neighborhood descent process. These three new approaches are compared to exact and heuristic approaches by solving the available SDVRP benchmark problem sets. Our approaches are found to compare favorably with existing approaches and we find 16 new best solutions for a recent 21 problem benchmark set.  相似文献   

7.
The primary purpose of this paper is to validate a clustering procedure used to construct contiguous vehicle routing zones (VRZs) in metropolitan regions. Given a set of customers with random demand for pickups and deliveries over the day, the goal of the design problem is to cluster the customers into zones that can be serviced by a single vehicle. Monte Carlo simulation is used to determine the feasibility of the zones with respect to package count and tour time. For each replication, a separate probabilistic traveling salesman problem (TSP) is solved for each zone. For the case where deliveries must precede pickups, a heuristic approach to the TSP is developed and evaluated, also using Monte Carlo simulation. In the testing, performance is measured by overall travel costs and the probability of constraint violations. Gaps in tour length, tour time and tour cost are the measure used when comparing exact and heuristic TSP solutions.  相似文献   

8.
The Thief Orienteering Problem (ThOP) is a multi-component problem that combines features of two classic combinatorial optimization problems: Orienteering Problem and Knapsack Problem. The ThOP is challenging due to the given time constraint and the interaction between its components. We propose an Ant Colony Optimization algorithm together with a new packing heuristic to deal individually and interactively with problem components. Our approach outperforms existing work on more than 90% of the benchmarking instances, with an average improvement of over 300%.  相似文献   

9.
We consider an extension of the capacitated Vehicle Routing Problem (VRP), known as the Vehicle Routing Problem with Backhauls (VRPB), in which the set of customers is partitioned into two subsets: Linehaul and Backhaul customers. Each Linehaul customer requires the delivery of a given quantity of product from the depot, whereas a given quantity of product must be picked up from each Backhaul customer and transported to the depot. VRPB is known to be NP-hard in the strong sense, and many heuristic algorithms were proposed for the approximate solution of the problem with symmetric or Euclidean cost matrices. We present a cluster-first-route-second heuristic which uses a new clustering method and may also be used to solve problems with asymmetric cost matrix. The approach exploits the information of the normally infeasible VRPB solutions associated with a lower bound. The bound used is a Lagrangian relaxation previously proposed by the authors. The final set of feasible routes is built through a modified Traveling Salesman Problem (TSP) heuristic, and inter-route and intra-route arc exchanges. Extensive computational tests on symmetric and asymmetric instances from the literature show the effectiveness of the proposed approach.  相似文献   

10.
The formulation and analysis of a new plant location problem is presented. The problem studied, herein referred to as the Return Plant Location Problem (RPLP), is that of cost minimization in a system of suppliers and customers in which there exists a return product from each customer. Lagrangian decomposition based heuristic and exact solution methods are given. The methods are applied to test problems with different structures and compared with the classical subgradient optimization approach.  相似文献   

11.
The Team Orienteering Problem (TOP) is a particular vehicle routing problem in which the aim is to maximize the profit gained from visiting customers without exceeding a travel cost/time limit. This paper proposes a new and fast evaluation process for TOP based on an interval graph model and a Particle Swarm Optimization inspired Algorithm (PSOiA) to solve the problem. Experiments conducted on the standard benchmark of TOP clearly show that our algorithm outperforms the existing solving methods. PSOiA reached a relative error of 0.0005% whereas the best known relative error in the literature is 0.0394%. Our algorithm detects all but one of the best known solutions. Moreover, a strict improvement was found for one instance of the benchmark and a new set of larger instances was introduced.  相似文献   

12.
The Team Orienteering Problem with Time Windows (TOPTW) is the extension of the Orienteering Problem (OP) where each node is limited by a predefined time window during which the service has to start. The objective of the TOPTW is to maximize the total collected score by visiting a set of nodes with a limited number of paths. We propose two algorithms, Iterated Local Search and a hybridization of Simulated Annealing and Iterated Local Search (SAILS), to solve the TOPTW. As indicated in multiple research works on algorithms for the OP and its variants, determining appropriate parameter values in a statistical way remains a challenge. We apply Design of Experiments, namely factorial experimental design, to screen and rank all the parameters thereby allowing us to focus on the parameter search space of the important parameters. The proposed algorithms are tested on benchmark TOPTW instances. We demonstrate that well-tuned ILS and SAILS lead to improvements in terms of the quality of the solutions. More precisely, we are able to improve 50 best known solution values on the available benchmark instances.  相似文献   

13.
This paper addresses a case in which a vehicle, member of a fleet distributing a single product, is immobilized while executing its distribution plan. Some active vehicles of the fleet are then rerouted to serve selected clients of the immobilized vehicle. We model this re-planning problem as a variation of the Team Orienteering Problem constraining all vehicle routes to an upper time, or distance, limit, and taking into account limited vehicle capacity. We propose an efficient heuristic to provide solutions in almost real-time. The heuristic progressively constructs new routes for each active vehicle, which may load additional product by visiting the warehouse or the immobilized vehicle. If appropriate, we solve this replenishment sub-problem by a fast labelling algorithm. We test the effectiveness of the proposed heuristic by comparing its solutions with those obtained by an appropriate Genetic Algorithm (GA) that yields high quality (but computationally expensive) results.  相似文献   

14.
In this paper, the selective travelling salesperson problem with stochastic service times, travel times, and travel costs (SSTSP) is addressed. In the SSTSP, service times, travel times and travel costs are known a priori only probabilistically. A non-negative value of reward for providing service is associated with each customer and there is a pre-specified limit on the duration of the solution tour. It is assumed that not all potential customers can be visited within this tour duration limit, even under the best circumstances. And, thus, a subset of customers must be selected. The objective of the SSTSP is to design an a priori tour that visits each chosen customer once such that the total profit (total reward collected by servicing customers minus travel costs) is maximized and the probability that the total actual tour duration exceeds a given threshold is no larger than a chosen probability value. We formulate the SSTSP as a chance-constrained stochastic program and propose both exact and heuristic approaches for solving it. Computational experiments indicate that the exact algorithm is able to solve small- and moderate-size problems to optimality and the heuristic can provide near-optimal solutions in significantly reduced computing time.  相似文献   

15.
In this paper we consider the problem of physically distributing finished goods from a central facility to geographically dispersed customers, which pose daily demands for items produced in the facility and act as sales points for consumers. The management of the facility is responsible for satisfying all demand, and promises deliveries to the customers within fixed time intervals that represent the earliest and latest times during the day that a delivery can take place. We formulate a comprehensive mathematical model to capture all aspects of the problem, and incorporate in the model all critical practical concerns such as vehicle capacity, delivery time intervals and all relevant costs. The model, which is a case of the vehicle routing problem with time windows, is solved using a new heuristic technique. Our solution method, which is based upon Atkinson's greedy look-ahead heuristic, enhances traditional vehicle routing approaches, and provides surprisingly good performance results with respect to a set of standard test problems from the literature. The approach is used to determine the vehicle fleet size and the daily route of each vehicle in an industrial example from the food industry. This actual problem, with approximately two thousand customers, is presented and solved by our heuristic, using an interface to a Geographical Information System to determine inter-customer and depot–customer distances. The results indicate that the method is well suited for determining the required number of vehicles and the delivery schedules on a daily basis, in real life applications.  相似文献   

16.
This paper proposes a scatter search-based heuristic approach to the capacitated clustering problem. In this problem, a given set of customers with known demands must be partitioned into p distinct clusters. Each cluster is specified by a customer acting as a cluster center for this cluster. The objective is to minimize the sum of distances from all cluster centers to all other customers in their cluster, such that a given capacity limit of the cluster is not exceeded and that every customer is assigned to exactly one cluster. Computational results on a set of instances from the literature indicate that the heuristic is among the best heuristics developed for this problem.  相似文献   

17.
In the multi-period petrol station replenishment problem (MPSRP) the aim is to optimize the delivery of several petroleum products to a set of petrol stations over a given planning horizon. One must determine, for each day of the planning horizon, how much of each product should be delivered to each station, how to load these products into vehicle compartments, and how to plan vehicle routes. The objective is to maximize the total profit equal to the revenue, minus the sum of routing costs and of regular and overtime costs. This article describes a heuristic for the MPSRP. It contains a route construction and truck loading procedures, a route packing procedure, and two procedures enabling the anticipation or the postponement of deliveries. The heuristic was extensively tested on randomly generated data and compared to a previously published algorithm. Computational results confirm the efficiency of the proposed methodology.  相似文献   

18.
The orienteering problem with time windows, denoted by OPTW, belongs to a class of routeing and scheduling problems that arise in physical distribution. It may be modelled as a problem on a graph. It considers a set of nodes (customers), each with an associated profit and service duration (time window), and a set of arcs, each with an associated travel time. The objective of the problem is to construct an acyclic path beginning at a specified origin and ending at a specified destination that maximizes the total profit while observing time window constraints on all nodes and not exceeding a designated time limit. The problem is classified as NP-hard and, thus, an exact algorithm that executes in reasonable computational time is unlikely to exist. Since the problem is highly-constrained, we were able to develop a heuristic (referred to as the ‘tree’ heuristic) based upon an exhaustive search of the feasible solution space. The tree heuristic systematically generates a list of feasible paths and then selects the most profitable path from the list. In comparison with an insertion heuristic, the tree heuristic was found to produce improved values of total profit for heavily-constrained, modest-sized problems with reasonable computational effort.  相似文献   

19.
The Vehicle Routing Problem with Time Windows consists of computing a minimum cost set of routes for a fleet of vehicles of limited capacity visiting a given set of customers with known demand, with the additional constraint that each customer must be visited in a specified time window. We consider the case in which time window constraints are relaxed into “soft” constraints, that is penalty terms are added to the solution cost whenever a vehicle serves a customer outside of his time window. We present a branch-and-price algorithm which is the first exact optimization algorithm for this problem.  相似文献   

20.
The Orienteering Problem (OP) is an important problem in network optimization in which each city in a network is assigned a score and a maximum-score path from a designated start city to a designated end city is sought that is shorter than a pre-specified length limit. The Generalized Orienteering Problem (GOP) is a generalized version of the OP in which each city is assigned a number of scores for different attributes and the overall function to optimize is a function of these attribute scores. In this paper, the function used was a non-linear combination of attribute scores, making the problem difficult to solve. The GOP has a number of applications, largely in the field of routing. We designed a two-parameter iterative algorithm for the GOP, and computational experiments suggest that this algorithm performs as well as or better than other heuristics for the GOP in terms of solution quality while running faster. Further computational experiments suggest that our algorithm also outperforms the leading algorithm for solving the OP in terms of solution quality while maintaining a comparable solution speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号