首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A stochastic model for the nonlinear point reactor kinetics equations with Newtonian temperature feedback and multi-group of precursor delayed neutrons is presented. This model is a couple of the stiff stochastic nonlinear differential equations. The matrix formula of this stochastic nonlinear model is solved by the analytical exponential technique (AET). This proposed technique is based on the integration factor, Euler’s method and the exponential function of the coefficient matrix. This exponential function is determined via the eigenvalues and corresponding eigenvectors of the coefficient matrix. The mean neutron population of the stochastic nonlinear model in the presence Newtonian temperature feedback and six-groups of delayed neutrons is computed for various cases of the external reactivity. The numerical results of the analytical exponential technique are compared with the results of the Euler–Maruyama method and the deterministic results. This comparison confirms that the AET for stochastic nonlinear model is efficient to study the natural behavior of neutron population in the presence temperature feedback effects and multi-group of precursor delayed neutrons.  相似文献   

2.
In this paper, an efficient method for solving nonlinear Stratonovich Volterra integral equations is proposed. By using Bernoulli polynomials and their stochastic operational matrix of integration, these equations can be reduced to the system of nonlinear algebraic equations with unknown Bernoulli coefficient which can be solved by numerical methods such as Newton’s method. Also, an error analysis is valid under fairly restrictive conditions. Furthermore, in order to show the accuracy and reliability of the proposed method, the new approach is compared with the block pulse functions method by some examples. The obtained results reveal that the proposed method is more accurate and efficient than the block pulse functions method.  相似文献   

3.
We describe the numerical scheme for the discretization and solution of 2D elliptic equations with strongly varying piecewise constant coefficients arising in the stochastic homogenization of multiscale composite materials. An efficient stiffness matrix generation scheme based on assembling the local Kronecker product matrices is introduced. The resulting large linear systems of equations are solved by the preconditioned conjugate gradient iteration with a convergence rate that is independent of the grid size and the variation in jumping coefficients (contrast). Using this solver, we numerically investigate the convergence of the representative volume element (RVE) method in stochastic homogenization that extracts the effective behavior of the random coefficient field. Our numerical experiments confirm the asymptotic convergence rate of systematic error and standard deviation in the size of RVE rigorously established in Gloria et al. The asymptotic behavior of covariances of the homogenized matrix in the form of a quartic tensor is also studied numerically. Our approach allows laptop computation of sufficiently large number of stochastic realizations even for large sizes of the RVE.  相似文献   

4.
Korenevskii  D. G. 《Mathematical Notes》2001,70(1-2):192-205
We give spectral and algebraic coefficient criteria (necessary and sufficient conditions) as well as sufficient algebraic coefficient conditions for the Lyapunov asymptotic stability of solutions to systems of linear deterministic or stochastic delay difference equations with continuous time under white noise coefficient perturbations for the case in which all delay ratios are rational. For stochastic systems, mean-square asymptotic stability is studied. The Lyapunov function method is used. Our criteria on algebraic coefficients and our sufficient conditions are stated in terms of matrix Lyapunov equations (for deterministic systems) and matrix Sylvester equations (for stochastic systems).  相似文献   

5.
This paper develops mathematical models to describe the growth, critical density, and extinction probability in sparse populations experiencing Allee effects. An Allee effect (or depensation) is a situation at low population densities where the per-individual growth rate is an increasing function of population density. A potentially important mechanism causing Allee effects is a shortage of mating encounters in sparse populations. Stochastic models are proposed for predicting the probability of encounter or the frequency of encounter as a function of population density. A negative exponential function is derived as such an encounter function under very general biological assumptions, including random, regular, or aggregated spatial patterns. A rectangular hyperbola function, heretofore used in ecology as the functional response of predator feeding rate to prey density, arises from the negative exponential function when encounter probabilities are assumed heterogeneous among individuals. These encounter functions produce Allee effects when incorporated into population growth models as birth rates. Three types of population models with encounter-limited birth rates are compared: (1) deterministic differential equations, (2) stochastic discrete birth-death processes, and (3) stochastic continuous diffusion processes. The phenomenon of a critical density, a major consequence of Allee effects, manifests itself differently in the different types of models. The critical density is a lower unstable equilibrium in the deterministic differential equation models. For the stochastic discrete birth-death processes considered here, the critical density is an inflection point in the probability of extinction plotted as a function of initial population density. In the continuous diffusion processes, the critical density becomes a local minimum (antimode) in the stationary probability distribution for population density. For both types of stochastic models, a critical density appears as an inflection point in the probability of attaining a small population density (extinction) before attaining a large one. Multiplicative (“environmental”) stochastic noise amplifies Allee effects. Harvesting also amplifies those effects. Though Allee effects are difficult to detect or measure in natural populations, their presence would seriously impact exploitation, management, and preservation of biological resources.  相似文献   

6.
Many of the different numerical techniques in the partial differential equations framework for solving option pricing problems have employed only standard second-order discretization schemes. A higher-order discretization has the advantage of producing low size matrix systems for computing sufficiently accurate option prices and this paper proposes new computational schemes yielding high-order convergence rates for the solution of multi-factor option problems. These new schemes employ Galerkin finite element discretizations with quadratic basis functions for the approximation of the spatial derivatives in the pricing equations for stochastic volatility and two-asset option problems and time integration of the resulting semi-discrete systems requires the computation of a single matrix exponential. The computations indicate that this combination of high-order finite elements and exponential time integration leads to efficient algorithms for multi-factor problems. Highly accurate European prices are obtained with relatively coarse meshes and high-order convergence rates are also observed for options with the American early exercise feature. Various numerical examples are provided for illustrating the accuracy of the option prices for Heston’s and Bates stochastic volatility models and for two-asset problems under Merton’s jump-diffusion model.  相似文献   

7.
This paper deals with the problem of norm bounds for the solutions of stochastic hybrid systems with Markovian switching and time delay.Based on Lyapunov-Krasovskii theory for functional differential equations and the linear matrix inequality(LMI)approach,mean square exponential estimates for the solutions of this class of linear stochastic hybrid systems are derived.Finally,An example is illustrated to show the applicability and effectiveness of our method.  相似文献   

8.
This article considers the optimal control of nuclear fission reactors modeled by parabolic partial differential equations. The neutrons are divided into fast and thermal groups with two equations describing their interaction and fission, while a third equation describes the temperature in the reactor. The coefficient for the fission and absorption of the thermal neutron is assumed to be controlled by a function through the use of control rods in the reactor. The object is to maintain a target neutron flux shape, while a desired power level and adjustment costs are taken into consideration. A nonlinear optimality system of six equations is deduced, characterizing the optimal control. An iterative procedure is shown to contract toward the solution of the optimality system in small time intervals. The theory is extended to include the effect of other fission products, leading to coupled ordinary and partial differential equations. Numerical experiments are also included, suggesting directions for further research. Accepted 13 January 1998  相似文献   

9.
The scaled boundary finite element method (SBFEM) is a semi-analytical method in which only the boundary is discretized. The results on the boundary are scaled into the domain with respect to a scaling center which must be “visible” from the whole boundary. For beam-like problems the scaling center can be selected at infinity and only the cross-section is discretized. Two new elements for thin-walled beams have been developed on the basis of the first order shear deformation theory. The beam sections are considered to be multilayered laminate plates with arbitrary layup. The arbitrary cross-section is discretized with beam elements of Timoshenko type. Using the virtual work principle gives the SBFEM equation, which is a system of differential equations of a gyroscopic type. The solution is calculated using the matrix exponential function. The elements have been tested and compared with a finite element model and they give good results. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
利用灰矩阵的矩阵覆盖集的分解技术和Lyapunov函数法,研究了具有时变灰色参数的随机时滞系统的p-阶矩指数鲁棒稳定性问题,得到了该系统p-阶矩指数鲁棒稳定的时滞独立和时滞依赖的条件,并通过数值例子说明了判别条件的有效性和实用性.  相似文献   

11.
In this paper, we report the development and analysis of some novel versions and approximations of the fractional-order (FO) point reactor kinetics model for a nuclear reactor with slab geometry. A systematic development of the FO Inhour equation, Inverse FO point reactor kinetics model, and fractional-order versions of the constant delayed neutron rate approximation model and prompt jump approximation model is presented for the first time (for both one delayed group and six delayed groups). These models evolve from the FO point reactor kinetics model, which has been derived from the FO Neutron Telegraph Equation for the neutron transport considering the subdiffusive neutron transport. Various observations and the analysis results are reported and the corresponding justifications are addressed using the subdiffusive framework for the neutron transport. The FO Inhour equation is found out to be a pseudo-polynomial with its degree depending on the order of the fractional derivative in the FO model. The inverse FO point reactor kinetics model is derived and used to find the reactivity variation required to achieve exponential and sinusoidal power variation in the core. The situation of sudden insertion of negative reactivity is analyzed using the FO constant delayed neutron rate approximation. Use of FO model for representing the prompt jump in reactor power is advocated on the basis of subdiffusion. Comparison with the respective integer-order models is carried out for the practical data. Also, it has been shown analytically that integer-order models are a special case of FO models when the order of time-derivative is one. Development of these FO models plays a crucial role in reactor theory and operation as it is the first step towards achieving the FO control-oriented model for a nuclear reactor. The results presented here form an important step in the efforts to establish a step-by-step and systematic theory for the FO modeling of a nuclear reactor.  相似文献   

12.
本文研究了一个具有变时滞线性中立型随机微分方程的指数p-稳定性.利用小动点定理,在系数函数不要求是取确定值的弱条件下得到了方程指数p-稳定的充分条件,得到了比luo更一般的结论,推广了他的结果.最后,举例说叫本文结果的有效性.  相似文献   

13.
In this article, we shall explore the state of art of stochastic flows to derive an exponential affine form of the bond price when the short rate process is governed by a Markovian regime-switching jump-diffusion version of the Vasicek model. We provide the flexibility that the market parameters, including the mean-reversion level, the volatility rate and the intensity of the jump component switch over time according to a continuous-time, finite-state Markov chain. The states of the chain may be interpreted as different states of an economy or different stages of a business cycle. We shall provide a representation for the exponential affine form of the bond price in terms of fundamental matrix solutions of linear matrix differential equations.  相似文献   

14.
This paper analyzes the stochastic resonance induced by a novel transition of one-dimensional bistable system in the neighborhood of bifurcation point with the method of moment, which refer to the transition of system motion among a potential well of stable fixed point before bifurcation of original system and double-well potential of two coexisting stable fixed points after original system bifurcation at the presence of internal noise. The results show: the semi-analytical result of stochastic resonance of one-dimensional bistable system in the neighborhood of bifurcation point may be obtained, and the semi-analytical result is in accord with the one of Monte Carlo simulation qualitatively, the occurrence of stochastic resonance is related to the bifurcation of noisy nonlinear dynamical system moment equations, which induce the transfer of energy of ensemble average (Ex) of system response in each frequency component and make the energy of ensemble average of system response concentrate on the frequency of input signal, stochastic resonance occurs.  相似文献   

15.
We study the dynamics of nonself-similar solutions of the Cauchy problem for a stochastic partial differential Itô equation of the parabolic type with linear principal part and with the diffusion coefficient that is exponential function whose exponent is larger than zero, but is less than 1. The equations of such a type are named the Dawson equations. It is proved that the solution that is of a nonself-similar form and is generated by a finite initial function behaves itself in the course of time analogously to a self-similar solution.  相似文献   

16.
由于流体受到某些遗传和不确定信息外力的影响,考虑了含时变时滞随机外力的2D-Navier-Stokes方程.借助随机分析中的It6公式和Burkholder-Davis-Gundy不等式,证明了大粘性系数情形方程整体弱解的均方指数稳定和几乎必然指数稳定.  相似文献   

17.
Functionally graded magneto-electro-elastic (FGMEE) materials has been increasingly used in engineering applications, particularly in smart material or intelligent structure systems. This paper proposes a semi-analytical approach for sliding frictional contact problem between a rigid insulating sphere and a transversely isotropic FGMEE film and half-space based on frequency response functions (FRFs). Multilayered approximation is used to model the functionally graded material (FGM), and the FRFs for each MEE layer are derived explicitly. The unknown coefficients in FRFs are formulated by two matrix equations, and their efficient solution process is proposed. Based on the obtained FRFs, a highly efficient semi-analytical model (SAM) is developed which is able to solve the three-dimensional frictional contact of FGMEE materials with arbitrary layer designs. The model is validated with finite element method and the literature. Furthermore, the pressure/stress distribution and electric/magnetic potential are studied in different FGM designs to investigate the influence of material layout.  相似文献   

18.
In this article, we apply the method of lines (MOL) for solving the heat equation. The use of MOL yields a system of first–order differential equations with initial value. The solution of this system could be obtained in the form of exponential matrix function. Two approaches could be applied on this problem. The first approach is approximation of the exponential matrix by Taylor expansion, Padé and limit approximations. Using this approach leads to create various explicit and implicit finite difference methods with different stability region and order of accuracy up to six for space and superlinear convergence for time variables. Also, the second approach is a direct method which computes the exponential matrix by applying its eigenvalues and eigenvectors analytically. The direct approach has been applied on one, two and three‐dimensional heat equations with Dirichlet, Neumann, Robin and periodic boundary conditions.  相似文献   

19.
In this paper, an efficient wavelet Galerkin method based on the stochastic operational matrix of second kind Chebyshev wavelet is proposed for solving stochastic Itô-Volterra integral equations. Convergence and error analysis of the presented wavelets method are investigated. The numerical results are compared with exact solution and those of other existing methods.  相似文献   

20.
In this study, fractional differential equations having quintic nonlinearity are considered by proposing an accurate numerical method based on the matching polynomial and matrix‐collocation system. This method provides an integration between matrix and fractional derivative, which makes it fast and efficient. A hybrid computer program is designed by making use of the fast algorithmic structure of the method. An error analysis technique consisting of the fractional‐based residual function is constructed to scrutinize the precision of the method. Some error tests are also performed. Figures and tables present the consistency of the approximate solutions of highly stiff model problems. All results point out that the method is effective, simple, and eligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号