首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Engineers who choose to change careers and become mathematics teachers are a specific group as far as their mathematics learning in the context of engineering and their previous work experience are concerned. Regarding mathematics, they mainly engaged in applied mathematics associated with engineering, which is a highly practical field. This research explores experienced engineers’ perceptions of mathematics teaching-related topics, before starting their studies in a pre-service mathematics teacher preparation programme. This research explores their perceptions of mathematics as a discipline, mathematics teaching and mathematical understanding. The qualitative research involves three mechanical engineers, two industrial management engineers, and an electrical engineer. Semi-structured interviews were conducted before the beginning of the programme, and analysed qualitatively. The participants view engineering as an applied and changing discipline while perceiving mathematics as closed, rigorous, accurate, systematic, theoretical and as a tool for engineering. They mostly address general features of mathematics teaching while expressing a more multifaceted view of mathematical understanding. Due to the specific characteristics of the participants, this study may contribute to planning mathematics teacher preparation programmes for engineers.  相似文献   

2.
Yeping Li  Gerald Kulm 《ZDM》2008,40(5):833-843
To make teacher preparation and professional development effective, it is important to find out possible deficiencies in teachers’ knowledge as well as teachers’ own perceptions about their needs. By focusing on pre-service teachers’ knowledge of fraction division in this article, we conceptualize the notion of pre-service teachers’ knowledge in mathematics and pedagogy for teaching as containing both teachers’ perceptions of their preparation and their mathematics knowledge needed for teaching. With specific assessment instruments developed for pre-service middle school teachers, we focus on both pre-service teachers’ own perceptions about their knowledge preparation and the extent of their mathematics knowledge on the topic of fraction division. The results reveal a wide gap between sampled pre-service middle school teachers’ general perceptions/confidence and their limited mathematics knowledge needed for teaching fraction division conceptually. The results suggest that these pre-service teachers need to develop a sound and deep understanding of mathematics knowledge for teaching in order to build their confidence for classroom instruction. The study’s findings indicate the feasibility and importance of conceptualizing the notion of teachers’ knowledge in mathematics and pedagogy for teaching to include teachers’ perceptions. The applicability and implications of this expanded notion of teachers’ knowledge is then discussed.  相似文献   

3.
Yeping Li  Rongjin Huang 《ZDM》2008,40(5):845-859
In this study, we investigated the extent of knowledge in mathematics and pedagogy that Chinese practicing elementary mathematics teachers have and what changes teaching experience may bring to their knowledge. With a sample of 18 mathematics teachers from two elementary schools, we focused on both practicing teachers’ beliefs and perceptions about their own knowledge in mathematics and pedagogy and the extent of their knowledge on the topic of fraction division. The results revealed a gap between these teachers’ limited knowledge about the curriculum they teach and their solid mathematics knowledge for teaching, as an example, fraction division. Moreover, senior teachers used more diverse strategies that are concrete in nature than junior teachers in providing procedural justifications. The results suggested that Chinese practicing teachers benefit from teaching and in-service professional development for the improvement of their mathematics knowledge for teaching but not their knowledge about mathematics curriculum.  相似文献   

4.
Evidence of deficiencies in basic mathematical skills of beginning undergraduates has been documented worldwide. Many different theories have been set out as to why these declines in mathematical competency levels have occurred over time. One such theory is the widening access to higher education which has resulted in a less mathematically prepared profile of beginning undergraduates than ever before. In response to this situation, the present study details the examination of a range of methods through which a student's mathematical performance in higher education could be predicted at the beginning of their third-level studies. Several statistical prediction methods were examined and the most effective method in predicting students’ mathematical performance was discriminant analysis. The discriminant analysis correctly classified 71.3% of students in terms of mathematics performance. An ability to carry out such a prediction in turn allows for appropriate mathematics remediation to be offered to students predicted to fail third-level mathematics. The results of the prediction of mathematical performance, which was carried out using a database consisting of over 1000 beginning undergraduates over a 3-year period, are detailed in this article along with the implications of such findings to educational policy and practice.  相似文献   

5.
The paper examines the roles and purposes of proof mentioned by university research faculty when reflecting on their own teaching and teaching at their institutions. Interview responses from 14 research mathematicians and statisticians who also teach are reported. The results suggest there is a great deal of variation in the role and purpose of proof in and among mathematics courses and that factors such as the course title, audience, and instructor influence this variation. The results also suggest that, for this diverse group, learning how to prove theorems is the most prominent role of proof in upper division undergraduate mathematics courses and that this training is considered preparation for graduate mathematics studies. Absent were responses discussing proof's role in preparing K-12 mathematics teachers. Implications for a proof and proving landscape for school mathematics are discussed.  相似文献   

6.
7.
8.
Most science departments offer compulsory mathematics courses to their students with the expectation that students can apply their experience from the mathematics courses to other fields of study, including science. The current study first aims to investigate the views of pre-service science teachers of science-teaching preparation degrees and their expectations regarding the difficulty level of mathematics courses in science-teaching education programmes. Second, the study investigates changes and the reasons behind the changes in their interest regarding mathematics after completing these courses. Third, the current study seeks to reveal undergraduate science teachers’ opinions regarding the contribution of undergraduate mathematics courses to their professional development. Being qualitative in nature, this study was a case study. According to the results, almost all of the students considered that undergraduate mathematics courses were ‘difficult’ because of the complex and intensive content of the courses and their poor background mathematical knowledge. Moreover, the majority of science undergraduates mentioned that mathematics would contribute to their professional development as a science teacher. On the other hand, they declared a negative change in their attitude towards mathematics after completing the mathematics courses due to continuous failure at mathematics and their teachers’ lack of knowledge in terms of teaching mathematics.  相似文献   

9.
This study investigates the effects of perceived mathematics ability (PMA) on the learning process with special reference to 147 undergraduates following an elementary statistics (ES) course. A model incorporating PMA together with aptitude, effort put in, expected grade, motivation to do well and interest in the subject, which are deemed to be either directly or indirectly associated with performance, is developed. PMA itself is not a good predictor of ES performance, rather its effect may be channelled through interest, expected grade and motivation to do well in ES. Low perception in mathematics ability impedes effort put forth when learning ES. The influence of PMA on ES performance is likely to be the consequence of the belief that mathematics is essential to learn ES.  相似文献   

10.
de Villiers (1990) suggested five roles of proof important in the professional mathematics community that may also serve to meaningfully engage students in learning proof: verification, explanation, systematization, discovery, and communication. We investigate written reflections on an end-of-semester assignment from undergraduates in an inquiry-based transition to proof course, where students reflected on instances during the semester when they engaged in the five roles of proof. We present the types of activities students recalled as influential to their engagement in the roles of proof (presenting, discussing, conjecturing, working on problem sets, and critiquing) and describe how students perceived these activities as influential to their engagement in the roles of proof. We provide student quotations highlighting these activities and offer implications for both research and practice.  相似文献   

11.
This study adds to our understanding of science and mathematics teacher leadership in rural schools. Through In Vivo and Concept coding of teacher interviews, we investigated 20 secondary science and mathematics teachers' perceptions of rural teacher leadership during their participation in a three-year professional development program. As the teachers developed as teacher leaders, they broadened their focus from improving their own students' learning to sharing new knowledge learned through the program with other teachers both informally and formally. We compared our program components to the Teacher Leader Model Standards and added an emphasis on the importance of disciplinary content knowledge. We also identified patterns in science and mathematics teacher leadership that are contextually connected to teachers' instruction in rural high poverty schools. Rural teacher leadership included the importance of building strong teacher–student relationships, providing new academic opportunities for students, encouraging students' success, and building community connections.  相似文献   

12.
This empirical study explores the roles that Emotional Intelligence (EI) and Emotional Self-Efficacy (ESE) play in undergraduates’ mathematical literacy, and the influence of EI and ESE on students’ attitudes towards and beliefs about mathematics. A convenience sample of 93 female and 82 male first-year undergraduates completed a test of mathematical literacy, followed by an online survey designed to measure the students’ EI, ESE and factors associated with mathematical literacy. Analysis of the data revealed significant gender differences. Males attained a higher mean test score than females and out-performed the females on most of the individual questions and the associated mathematical tasks. Overall, males expressed greater confidence in their mathematical skills, although both males’ and females’ confidence outweighed their actual mathematical proficiency. Correlation analyses revealed that males and females attaining higher mathematical literacy test scores were more confident and persistent, exhibited lower levels of mathematics anxiety and possessed higher mathematics qualifications. Correlation analyses also revealed that in male students, aspects of ESE were associated with beliefs concerning the learning of mathematics (i.e. that intelligence is malleable and that persistence can facilitate success), but not with confidence or actual performance. Both EI and ESE play a greater role with regard to test performance and attitudes/beliefs regarding mathematics amongst female undergraduates; higher EI and ESE scores were associated with higher test scores, while females exhibiting higher levels of ESE were also more confident and less anxious about mathematics, believed intelligence to be malleable, were more persistent and were learning goal oriented. Moderated regression analyses confirmed mathematics anxiety as a negative predictor of test performance in males and females, but also revealed that in females EI and ESE moderate the effects of anxiety on test performance, with the relationship between anxiety and test performance linked more to emotional management (EI) than to ESE.  相似文献   

13.
Kortenkamp  Ulrich 《ZDM》2004,36(2):61-66
Experimental mathematics is a serious branch of mathematics that starts gaining attention both in mathematics education and research. We given examples of using experimental techniques (not only) on the classroom. At first sight it seems that introducing experiments will weaken the formal rules and the abstractness of mathematics that are considered a valuable contribution to education as a whole. By putting proof and experiment side by side we show how this can be avoided. We also highlight consequences of experimentation for educational computer software.  相似文献   

14.
There are two main arguments underlying the claims for the value of interactive computer programming used by students to model mathematical ideas. One is concerned with mathematical content, i.e. with mathematics as an object of study. The other is concerned with mathematical activity, i.e. doing mathematics, or ‘Mathematicking’ [1]. Both content and activity include processes and these provide the main links with programming. Examples of processes in the content of mathematics are addition, transformation and integration, and these can be described by instructions in a computer program. Examples of process in the activity are problem‐solving, proof generation and pattern finding which can be described by analogy to program building and debugging. We assess the arguments for programming, in relation to the training of teachers, and describe a pilot‐study in which student teachers with mathematical difficulties were taught the programming language LOGO. Observation of the students, learning the language and using it to manipulate computer models of mathematical ideas, which they had not understood previously, highlights both advantages and disadvantages in this approach. The problem of the representation of mathematical ideas within programming projects is discussed.  相似文献   

15.
This paper reports the similarities and differences in how “expert mathematics teacher” is conceptualized by mathematics educators in Hong Kong and Chongqing, two cities in China which share similar but different cultural and social backgrounds. Thirty-seven mathematics education researchers, school principals with mathematics education background, and mathematics teachers were interviewed on their perceptions of expert mathematics teacher. It is found that in both cities an expert mathematics teacher should have a profound knowledge base in mathematics, teaching, and students; strong ability in teaching; and a noble personality and a spirit of life-long learning. As for differences, an expert mathematics teacher should have the ability to conduct research, mentor other teachers, and have profound knowledge of examination and educational theories in Chongqing. These attributes were not found in Hong Kong. These similarities and differences are discussed, and relevant social and cultural factors in the two contexts are examined.  相似文献   

16.
17.
This paper reports some initial findings from research designed to understand more deeply the motivational and emotional landscape of disaffection with school mathematics. A context is described in which there has been significant concern expressed about a number of aspects of mathematics education, but where affect is seen as salient to these problems, including levels of attainment. A case is made that a focus on the qualitative study of motivation and emotion may be more central to an understanding of the phenomenon of disaffection than that of a quantitative study of attitude. The study involved students at two Further Education Colleges who had performed poorly in national examinations, but were required to continue studying mathematics. It was expected that many of them would be disaffected with mathematics. A mixed method approach was adopted, in which students were asked to complete a simple questionnaire on their experience of emotion in mathematics classrooms, and were then interviewed using a range of procedures to elicit qualitative data about their experience of mathematics. Reversal Theory was used as a framework to inform the design of the methods used and analysis of the data. Results demonstrate the richness and volatility of their motivational and emotional experiences of mathematics.  相似文献   

18.
This paper reports a study which investigated the extent to which undergraduate mathematics students in the United Kingdom are currently taught to programme a computer as a core part of their mathematics degree programme. We undertook an online survey, with significant follow-up correspondence, to gather data on current curricula and received replies from 46 (63%) of the departments who teach a BSc mathematics degree. We found that 78% of BSc degree courses in mathematics included computer programming in a compulsory module but 11% of mathematics degree programmes do not teach programming to all their undergraduate mathematics students. In 2016, programming is most commonly taught to undergraduate mathematics students through imperative languages, notably MATLAB, using numerical analysis as the underlying (or parallel) mathematical subject matter. Statistics is a very popular choice in optional courses, using the package R. Computer algebra systems appear to be significantly less popular for compulsory first-year courses than a decade ago, and there was no mention of logic programming, functional programming or automatic theorem proving software. The modal form of assessment of computing modules is entirely by coursework (i.e. no examination).  相似文献   

19.
With the introduction of single‐sex classroom settings in coeducational public schools, there is an ongoing debate as to whether single‐sex education may reduce or reinforce traditional stereotypes and gender roles. In this article we present findings from a study that investigated the extent to which mathematics is perceived as a gendered domain among adolescent students enrolled in single‐sex classes and coeducational classes. Further we analyzed the relationships between student characteristics, class‐type, and teacher variables on students' perceptions of gender in mathematics. Findings from this study challenge the traditional view of mathematics as a male domain. Female participants more frequently considered mathematics to be a female domain than the male participants. Male participants, on the other hand, typically did not stereotype the mathematics as a gendered domain. Results from this study do not indicate, for girls at least, that participation in single‐sex classes results in a greater propensity to stereotype mathematics as a gendered domain than would be the case in coeducational classes. This study contributes to the evolving discourse and understanding of adolescents' gendered attitudes and beliefs towards mathematics—especially in light of stereotyped assertions that have a bearing on efforts to promote the learning of mathematics and science.  相似文献   

20.
Following the example designed to encourage an interest in mathematical proof detailed in Part 1, the present part has the aim of easing the learning of the subject. This is done by examples chosen to emphasize the unity of mathematics. Three principles, chosen for their triviality, are mentioned, and each of them is shown to be the basis of non‐trivial proofs of results from quite distinct areas of mathematics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号