首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Let \(R\) be a prime ring, \(L\) a noncentral Lie ideal of \(R\), \(F\) a generalized derivation with associated nonzero derivation \(d\) of \(R\). If \(a\in R\) such that \(a(d(u)^{l_1} F(u)^{l_2} d(u)^{l_3} F(u)^{l_4} \ldots F(u)^{l_k})^{n}=0\) for all \(u\in L\), where \(l_1,l_2,\ldots ,l_k\) are fixed non negative integers not all are zero and \(n\) is a fixed integer, then either \(a=0\) or \(R\) satisfies \(s_4\), the standard identity in four variables.  相似文献   

2.
Let R be a prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, \(f(x_1,\ldots ,x_n)\) be a multilinear polynomial over C, which is not central valued on R. Suppose that d is a non-zero derivation of R, F and G are two generalized derivations of R such that \(d\{F(u)u-uG^2(u)\}=0\) for all \(u\in f(R)\). Then one of the following holds:
  1. (i)
    there exist \(a, b, p\in U\), \(\lambda \in C\) such that \(F(x)=\lambda x+bx+xa^2\), \(G(x)=ax\), \(d(x)=[p, x]\) for all \(x\in R\) with \([p, b]=0\) and \(f(x_1,\ldots , x_n)^2\) is central valued on R;
     
  2. (ii)
    there exist \(a, b, p\in U\) such that \(F(x)=ax\), \(G(x)=xb\), \(d(x)=[p,x]\) for all \(x\in R\) and \(f(x_1,\ldots , x_n)^2\) is central valued on R with \([p, a-b^2]=0\);
     
  3. (iii)
    there exist \(a\in U\) such that \(F(x)=xa^2\) and \(G(x)=ax\) for all \(x\in R\);
     
  4. (iv)
    there exists \(a\in U\) such that \(F(x)=a^2x\) and \(G(x)=xa\) for all \(x\in R\) with \(a^2\in C\);
     
  5. (v)
    there exist \(a, p\in U\), \(\lambda , \alpha , \mu \in C\) such that \(F(x)=\lambda x-a^2x\), \(G(x)=xa\) and \(d(x)=[p,x]\) for all \(x\in R\) with \(a^2=\mu -\alpha p\) and \(\alpha p^2+(\lambda -2\mu ) p\in C\);
     
  6. (vi)
    there exist \(a\in U\), \(\lambda \in C\) such that R satisfies \(s_4\) and either \(F(x)=\lambda x+xa^2\), \(G(x)=ax\) or \(F(x)=\lambda x-a^2x\), \(G(x)=xa\) for all \(x\in R\).
     
  相似文献   

3.
For \(q,n,d \in \mathbb {N}\), let \(A_q(n,d)\) be the maximum size of a code \(C \subseteq [q]^n\) with minimum distance at least d. We give a divisibility argument resulting in the new upper bounds \(A_5(8,6) \le 65\), \(A_4(11,8)\le 60\) and \(A_3(16,11) \le 29\). These in turn imply the new upper bounds \(A_5(9,6) \le 325\)\(A_5(10,6) \le 1625\)\(A_5(11,6) \le 8125\) and \(A_4(12,8) \le 240\). Furthermore, we prove that for \(\mu ,q \in \mathbb {N}\), there is a 1–1-correspondence between symmetric \((\mu ,q)\)-nets (which are certain designs) and codes \(C \subseteq [q]^{\mu q}\) of size \(\mu q^2\) with minimum distance at least \(\mu q - \mu \). We derive the new upper bounds \(A_4(9,6) \le 120\) and \(A_4(10,6) \le 480\) from these ‘symmetric net’ codes.  相似文献   

4.
This paper considers filtered polynomial approximations on the unit sphere \(\mathbb {S}^d\subset \mathbb {R}^{d+1}\), obtained by truncating smoothly the Fourier series of an integrable function f with the help of a “filter” h, which is a real-valued continuous function on \([0,\infty )\) such that \(h(t)=1\) for \(t\in [0,1]\) and \(h(t)=0\) for \(t\ge 2\). The resulting “filtered polynomial approximation” (a spherical polynomial of degree \(2L-1\)) is then made fully discrete by approximating the inner product integrals by an N-point cubature rule of suitably high polynomial degree of precision, giving an approximation called “filtered hyperinterpolation”. In this paper we require that the filter h and all its derivatives up to \(\lfloor \tfrac{d-1}{2}\rfloor \) are absolutely continuous, while its right and left derivatives of order \(\lfloor \tfrac{d+1}{2}\rfloor \) exist everywhere and are of bounded variation. Under this assumption we show that for a function f in the Sobolev space \(W^s_p(\mathbb {S}^d),\ 1\le p\le \infty \), both approximations are of the optimal order \( L^{-s}\), in the first case for \(s>0\) and in the second fully discrete case for \(s>d/p\), conditions which in both cases cannot be weakened.  相似文献   

5.
Let \(X_1\) and \(X_2\) be metric spaces equipped with doubling measures and let \(L_1\) and \(L_2\) be nonnegative self-adjoint operators acting on \(L^2(X_1)\) and \(L^2(X_2)\) respectively. We study multivariable spectral multipliers \(F(L_1, L_2)\) acting on the Cartesian product of \(X_1\) and \(X_2\). Under the assumptions of the finite propagation speed property and Plancherel or Stein–Tomas restriction type estimates on the operators \(L_1\) and \(L_2\), we show that if a function F satisfies a Marcinkiewicz-type differential condition then the spectral multiplier operator \(F(L_1, L_2)\) is bounded from appropriate Hardy spaces to Lebesgue spaces on the product space \(X_1\times X_2\). We apply our results to the analysis of second-order elliptic operators in the product setting, specifically Riesz-transform-like operators and double Bochner–Riesz means.  相似文献   

6.
Let \(m \ge 5\) be an odd integer. For \(d=2^m+2^{(m+1)/2}+1\) or \(d=2^{m+1}+3\), Blondeau et al. conjectured that the power function \(F_d=x^d\) over \(\mathrm {GF}(2^{2m})\) is differentially 8-uniform in which all values \(0, \, 2, \, 4,\, 6,\, 8\) appear. In this paper, we confirm this conjecture and compute the differential spectrum of \(F_d\) for both values of d.  相似文献   

7.
We continue the study of stability of solving the interior problem of tomography. The starting point is the Gelfand–Graev formula, which converts the tomographic data into the finite Hilbert transform (FHT) of an unknown function f along a collection of lines. Pick one such line, call it the x-axis, and assume that the function to be reconstructed depends on a one-dimensional argument by restricting f to the x-axis. Let \(I_1\) be the interval where f is supported, and \(I_2\) be the interval where the Hilbert transform of f can be computed using the Gelfand–Graev formula. The equation to be solved is \(\left. {\mathcal {H}}_1 f=g\right| _{I_2}\), where \({\mathcal {H}}_1\) is the FHT that integrates over \(I_1\) and gives the result on \(I_2\), i.e. \({\mathcal {H}}_1: L^2(I_1)\rightarrow L^2(I_2)\). In the case of complete data, \(I_1\subset I_2\), and the classical FHT inversion formula reconstructs f in a stable fashion. In the case of interior problem (i.e., when the tomographic data are truncated), \(I_1\) is no longer a subset of \(I_2\), and the inversion problems becomes severely unstable. By using a differential operator L that commutes with \({\mathcal {H}}_1\), one can obtain the singular value decomposition of \({\mathcal {H}}_1\). Then the rate of decay of singular values of \({\mathcal {H}}_1\) is the measure of instability of finding f. Depending on the available tomographic data, different relative positions of the intervals \(I_{1,2}\) are possible. The cases when \(I_1\) and \(I_2\) are at a positive distance from each other or when they overlap have been investigated already. It was shown that in both cases the spectrum of the operator \({\mathcal {H}}_1^*{\mathcal {H}}_1\) is discrete, and the asymptotics of its eigenvalues \(\sigma _n\) as \(n\rightarrow \infty \) has been obtained. In this paper we consider the case when the intervals \(I_1=(a_1,0)\) and \(I_2=(0,a_2)\) are adjacent. Here \(a_1 < 0 < a_2\). Using recent developments in the Titchmarsh–Weyl theory, we show that the operator L corresponding to two touching intervals has only continuous spectrum and obtain two isometric transformations \(U_1\), \(U_2\), such that \(U_2{\mathcal {H}}_1 U_1^*\) is the multiplication operator with the function \(\sigma (\lambda )\), \(\lambda \ge (a_1^2+a_2^2)/8\). Here \(\lambda \) is the spectral parameter. Then we show that \(\sigma (\lambda )\rightarrow 0\) as \(\lambda \rightarrow \infty \) exponentially fast. This implies that the problem of finding f is severely ill-posed. We also obtain the leading asymptotic behavior of the kernels involved in the integral operators \(U_1\), \(U_2\) as \(\lambda \rightarrow \infty \). When the intervals are symmetric, i.e. \(-a_1=a_2\), the operators \(U_1\), \(U_2\) are obtained explicitly in terms of hypergeometric functions.  相似文献   

8.
We consider a continuum percolation model on \(\mathbb {R}^d\), \(d\ge 1\). For \(t,\lambda \in (0,\infty )\) and \(d\in \{1,2,3\}\), the occupied set is given by the union of independent Brownian paths running up to time t whose initial points form a Poisson point process with intensity \(\lambda >0\). When \(d\ge 4\), the Brownian paths are replaced by Wiener sausages with radius \(r>0\). We establish that, for \(d=1\) and all choices of t, no percolation occurs, whereas for \(d\ge 2\), there is a non-trivial percolation transition in t, provided \(\lambda \) and r are chosen properly. The last statement means that \(\lambda \) has to be chosen to be strictly smaller than the critical percolation parameter for the occupied set at time zero (which is infinite when \(d\in \{2,3\}\), but finite and dependent on r when \(d\ge 4\)). We further show that for all \(d\ge 2\), the unbounded cluster in the supercritical phase is unique. Along the way a finite box criterion for non-percolation in the Boolean model is extended to radius distributions with an exponential tail. This may be of independent interest. The present paper settles the basic properties of the model and should be viewed as a springboard for finer results.  相似文献   

9.
Let \(F\simeq {{\mathrm{GF}}}(p^n)\) be a finite field of characteristic p and \(p_k\) and \(p_\ell \) be power functions on F defined by \(p_k(x)=x^k\) and \(p_\ell (x)=x^\ell \) respectively. We show, that \(p_k\) and \(p_\ell \) are CCZ equivalent, if and only if there exists a positive integer \(0\le a< n\), such that \(\ell \equiv p^a k \pmod {p^n-1}\) or \(k\ell \equiv p^a \pmod {p^n-1}\).  相似文献   

10.
Given a sequence of data \(\{ y_{n} \} _{n \in \mathbb{Z}}\) with polynomial growth and an odd number \(d\), Schoenberg proved that there exists a unique cardinal spline \(f\) of degree \(d\) with polynomial growth such that \(f ( n ) =y_{n}\) for all \(n\in \mathbb{Z}\). In this work, we show that this result also holds if we consider weighted average data \(f\ast h ( n ) =y_{n}\), whenever the average function \(h\) satisfies some light conditions. In particular, the interpolation result is valid if we consider cell-average data \(\int_{n-a}^{n+a}f ( x ) dx=y_{n}\) with \(0< a\leq 1/2\). The case of even degree \(d\) is also studied.  相似文献   

11.
A generalized strong external difference family (briefly \((v, m; k_1,\dots ,k_m; \lambda _1,\dots ,\lambda _m)\)-GSEDF) was introduced by Paterson and Stinson in 2016. In this paper, we give some nonexistence results for GSEDFs. In particular, we prove that a \((v, 3;k_1,k_2,k_3; \lambda _1,\lambda _2,\lambda _3)\)-GSEDF does not exist when \(k_1+k_2+k_3< v\). We also give a first recursive construction for GSEDFs and prove that if there is a \((v,2;2\lambda ,\frac{v-1}{2};\lambda ,\lambda )\)-GSEDF, then there is a \((vt,2;4\lambda ,\frac{vt-1}{2};2\lambda ,2\lambda )\)-GSEDF with \(v>1\), \(t>1\) and \(v\equiv t\equiv 1\pmod 2\). Then we use it to obtain some new GSEDFs for \(m=2\). In particular, for any prime power q with \(q\equiv 1\pmod 4\), we show that there exists a \((qt, 2;(q-1)2^{n-1},\frac{qt-1}{2};(q-1)2^{n-2},(q-1)2^{n-2})\)-GSEDF, where \(t=p_1p_2\dots p_n\), \(p_i>1\), \(1\le i\le n\), \(p_1, p_2,\dots ,p_n\) are odd integers.  相似文献   

12.
We extend previous work on standard two-parameter Jordan partitions by Barry (Commun Algebra 43:4231–4246, 2015) to three parameters. Let \(J_r\) denote an \(r \times r\) matrix with minimal polynomial \((t-1)^r\) over a field F of characteristic p. For positive integers \(n_1\), \(n_2\), and \(n_3\) satisfying \(n_1 \le n_2 \le n_3\), the Jordan canonical form of the \(n_1 n_2 n_3 \times n_1 n_2 n_3\) matrix \(J_{n_1} \otimes J_{n_2} \otimes J_{n_3}\) has the form \(J_{\lambda _1} \oplus J_{\lambda _2} \oplus \cdots \oplus J_{\lambda _m}\) where \(\lambda _1 \ge \lambda _2 \ge \cdots \ge \lambda _m>0\) and \(\sum _{i=1}^m \lambda _i=n_1 n_2 n_3\). The partition \(\lambda (n_1,n_2,n_3:p)=(\lambda _1, \lambda _2,\ldots , \lambda _m)\) of \(n_1 n_2 n_3\), which depends on \(n_1\), \(n_2\), \(n_3\), and p, will be called a Jordan partition. We will define what we mean by a standard Jordan partition and give necessary and sufficient conditions for its existence.  相似文献   

13.
We find a concrete integral formula for the class of generalized Toeplitz operators \(T_a\) in Bergman spaces \(A^p\), \(1<p<\infty \), studied in an earlier work by the authors. The result is extended to little Hankel operators. We give an example of an \(L^2\)-symbol a such that \(T_{|a|} \) fails to be bounded in \(A^2\), although \(T_a : A^2 \rightarrow A^2\) is seen to be bounded by using the generalized definition. We also confirm that the generalized definition coincides with the classical one whenever the latter makes sense.  相似文献   

14.
For \(x>0\), let \(\pi (x)\) denote the number of primes not exceeding x. For integers a and \(m>0\), we determine when there is an integer \(n>1\) with \(\pi (n)=(n+a)/m\). In particular, we show that, for any integers \(m>2\) and \(a\leqslant \lceil e^{m-1}/(m-1)\rceil \), there is an integer \(n>1\) with \(\pi (n)=(n+a)/m\). Consequently, for any integer \(m>4\), there is a positive integer n with \(\pi (mn)=m+n\). We also pose several conjectures for further research; for example, we conjecture that, for each \(m=1,2,3,\ldots \), there is a positive integer n such that \(m+n\) divides \(p_m+p_n\), where \(p_k\) denotes the k-th prime.  相似文献   

15.
The maximum number of mutually orthogonal Sudoku Latin squares (MOSLS) of order \(n=m^2\) is \(n-m\). In this paper, we construct for \(n=q^2\), q a prime power, a set of \(q^2-q-1\) MOSLS of order \(q^2\) that cannot be extended to a set of \(q^2-q\) MOSLS. This contrasts to the theory of ordinary Latin squares of order n, where each set of \(n-2\) mutually orthogonal Latin Squares (MOLS) can be extended to a set of \(n-1\) MOLS (which is best possible). For this proof, we construct a particular maximal partial spread of size \(q^2-q+1\) in \(\mathrm {PG}(3,q)\) and use a connection between Sudoku Latin squares and projective geometry, established by Bailey, Cameron and Connelly.  相似文献   

16.
17.
In this paper, s-\({\text {PD}}\)-sets of minimum size \(s+1\) for partial permutation decoding for the binary linear Hadamard code \(H_m\) of length \(2^m\), for all \(m\ge 4\) and \(2 \le s \le \lfloor {\frac{2^m}{1+m}}\rfloor -1\), are constructed. Moreover, recursive constructions to obtain s-\({\text {PD}}\)-sets of size \(l\ge s+1\) for \(H_{m+1}\) of length \(2^{m+1}\), from an s-\({\text {PD}}\)-set of the same size for \(H_m\), are also described. These results are generalized to find s-\({\text {PD}}\)-sets for the \({\mathbb {Z}}_4\)-linear Hadamard codes \(H_{\gamma , \delta }\) of length \(2^m\), \(m=\gamma +2\delta -1\), which are binary Hadamard codes (not necessarily linear) obtained as the Gray map image of quaternary linear codes of type \(2^\gamma 4^\delta \). Specifically, s-PD-sets of minimum size \(s+1\) for \(H_{\gamma , \delta }\), for all \(\delta \ge 3\) and \(2\le s \le \lfloor {\frac{2^{2\delta -2}}{\delta }}\rfloor -1\), are constructed and recursive constructions are described.  相似文献   

18.
Given integers \(k\ge 2\), \(n \ge 2\), \(m \ge 2\) and \( a_1,a_2,\ldots ,a_m \in {\mathbb {Z}}{\backslash }{\{0\}}\), and let \(f(z)= \sum _{j=0}^{n}c_jz^j\) be a polynomial of integer coefficients with \(c_n>0\) and \((\sum _{i=1}^ma_i)|f(z)\) for some integer z. For a k-coloring of \([N]=\{1,2,\ldots ,N\}\), we say that there is a monochromatic solution of the equation \(a_1x_1+a_2x_2+\cdots +a_mx_m=f(z)\) if there exist pairwise distinct \(x_1,x_2,\ldots ,x_m\in [N]\) all of the same color such that the equation holds for some \(z\in \mathbb {Z}\). Problems of this type are often referred to as Ramsey-type problems. In this paper, it is shown that if \(a_i>0\) for \(1\le i\le m\), then there exists an integer \(N_0=N(k,m,n)\) such that for \(N\ge N_0\), each k-coloring of [N] contains a monochromatic solution \(x_1,x_2,\ldots ,x_m\) of the equation \(a_1x_1+a_2x_2+ \cdots +a_mx_m= f(z)\). Moreover, if n is odd and there are \(a_i\) and \(a_j\) such that \(a_ia_j<0\) for some \(1 \le i\ne j\le m\), then the assertion holds similarly.  相似文献   

19.
We consider the class of singular double coverings \(X \rightarrow {\mathbb {P}}^3\) ramified in the degeneration locus \(D\) of a family of 2-dimensional quadrics. These are precisely the quartic double solids constructed by Artin and Mumford as examples of unirational but nonrational conic bundles. With such a quartic surface \(D,\) one can associate an Enriques surface \(S\) which is the factor of the blowup of \(D\) by a natural involution acting without fixed points (such Enriques surfaces are known as nodal Enriques surfaces or Reye congruences). We show that the nontrivial part of the derived category of coherent sheaves on this Enriques surface \(S\) is equivalent to the nontrivial part of the derived category of a minimal resolution of singularities of \(X\).  相似文献   

20.
Let S be a semigroup, and \(\mathbb {F}\) a field of characteristic \(\ne 2\). If the pair \(f,g:S \rightarrow \mathbb {F}\) is a solution of Wilson’s \(\mu \)-functional equation such that \(f \ne 0\), then g satisfies d’Alembert’s \(\mu \)-functional equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号