首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Principal eigenvectors of adjacency matrices are often adopted as measures of centrality for a graph or digraph. However, previous principal-eigenvector-like measures for a digraph usually consider only the strongly connected component whose adjacency submatrix has the largest eigenvalue. In this paper, for each and every strongly connected component in a digraph, we add weights to diagonal elements of its member nodes in the adjacency matrix such that the modified matrix will have the new unique largest eigenvalue and corresponding principal eigenvectors. Consequently, we use the new principal eigenvectors of the modified matrices, based on different strongly connected components, not only to compose centrality measures but also to identify bowtie structures for a digraph.  相似文献   

2.
Let G=(V,E) be a simple, connected and undirected graph with vertex set V(G) and edge set E(G). Also let D(G) be the distance matrix of a graph G (Jane?i? et al., 2007) [13]. Here we obtain Nordhaus–Gaddum-type result for the spectral radius of distance matrix of a graph.A sharp upper bound on the maximal entry in the principal eigenvector of an adjacency matrix and signless Laplacian matrix of a simple, connected and undirected graph are investigated in Das (2009) [4] and Papendieck and Recht (2000) [15]. Generally, an upper bound on the maximal entry in the principal eigenvector of a symmetric nonnegative matrix with zero diagonal entries and without zero diagonal entries are investigated in Zhao and Hong (2002) [21] and Das (2009) [4], respectively. In this paper, we obtain an upper bound on minimal entry in the principal eigenvector for the distance matrix of a graph and characterize extremal graphs. Moreover, we present the lower and upper bounds on maximal entry in the principal eigenvector for the distance matrix of a graph and characterize extremal graphs.  相似文献   

3.
In this paper we propose the use of the eigensystem of complex adjacency matrices to analyze the structure of asymmetric directed weighted communication.

The use of complex Hermitian adjacency matrices allows to store more data relevant to asymmetric communication, and extends the interpretation of the resulting eigensystem beyond the principal eigenpair. This is based on the fact, that the adjacency matrix is transformed into a linear self-adjoint operator in Hilbert space.

Subgroups of members, or nodes of a communication network can be characterised by the eigensubspaces of the complex Hermitian adjacency matrix. Their relative ‘traffic-level’ is represented by the eigenvalue of the subspace, and their members are represented by the eigenvector components. Since eigenvectors belonging to distinct eigenvalues are orthogonal the subgroups can be viewed as independent with respect to the communication behavior of the relevant members of each subgroup.

As an example for this kind of analysis the EIES data set is used. The substructures and communication patterns within this data set are described.  相似文献   

4.
An upper bound on the maximal entry in the principal eigenvector of a symmetric nonnegative matrix with zero diagonal entries is investigated in [S. Zhao, Y. Hong, On the bounds of maximal entries in the principal eigenvector of symmetric nonnegative matrix, Linear Algebra Appl. 340 (2002) 245-252]. We obtain a sharp upper bound on the maximal entry ymaxp in the principal eigenvector of symmetric nonnegative matrix in terms of order, the spectral radius, the largest and the smallest diagonal entries of that matrix. Our bound is applicable for any symmetric nonnegative matrix and the upper bound of Zhao and Hong (2002) for the maximal entry ymaxp follows as a special case. Moreover, we find an upper bound on maximal entry in the principal eigenvector for the signless Laplacian matrix of a graph.  相似文献   

5.
We obtain the sharp upper and lower bounds for the spectral radius of a nonnegative weakly irreducible tensor. By using the technique of the representation associate matrix of a tensor and the associate directed graph of the matrix, the equality cases of the bounds are completely characterized by graph theory methods. Applying these bounds to a nonnegative irreducible matrix or a connected graph (digraph), we can improve the results of L. H. You, Y. J. Shu, and P. Z. Yuan [Linear Multilinear Algebra, 2017, 65(1): 113–128], and obtain some new or known results. Applying these bounds to a uniform hypergraph, we obtain some new results and improve some known results of X. Y. Yuan, M. Zhang, and M. Lu [Linear Algebra Appl., 2015, 484: 540–549]. Finally, we give a characterization of a strongly connected k-uniform directed hypergraph, and obtain some new results by applying these bounds to a uniform directed hypergraph.  相似文献   

6.
The upper bound of maximal entries in the principal eigenvector of a simple undirected connected graph is investigated in [Linear Algebra Appl. 310 (2000) 129]. We further investigate the maximal entry ymaxp in the principle eigenvector of symmetric nonnegative matrix with zero trace and obtain both sharp upper and lower bounds on the ymaxp. Particularly, this result answers the open question given in the above-mentioned reference  相似文献   

7.
The notions of subgraph centrality and communicability, based on the exponential of the adjacency matrix of the underlying graph, have been effectively used in the analysis of undirected networks. In this paper we propose an extension of these measures to directed networks, and we apply them to the problem of ranking hubs and authorities. The extension is achieved by bipartization, i.e., the directed network is mapped onto a bipartite undirected network with twice as many nodes in order to obtain a network with a symmetric adjacency matrix. We explicitly determine the exponential of this adjacency matrix in terms of the adjacency matrix of the original, directed network, and we give an interpretation of centrality and communicability in this new context, leading to a technique for ranking hubs and authorities. The matrix exponential method for computing hubs and authorities is compared to the well known HITS algorithm, both on small artificial examples and on more realistic real-world networks. A few other ranking algorithms are also discussed and compared with our technique. The use of Gaussian quadrature rules for calculating hub and authority scores is discussed.  相似文献   

8.
A graph is called integral if the spectrum of its adjacency matrix has only integral eigenvalues. An eigenvalue of a graph is called main eigenvalue if it has an eigenvector such that the sum of whose entries is not equal to zero. In this paper, we show that there are exactly 25 connected integral graphs with exactly two main eigenvalues and index 3.  相似文献   

9.
Consider an eigenvector of the adjacency matrix of a G(n,p) graph. A nodal domain is a connected component of the set of vertices where this eigenvector has a constant sign. It is known that with high probability, there are exactly two nodal domains for each eigenvector corresponding to a nonleading eigenvalue. We prove that with high probability, the sizes of these nodal domains are approximately equal to each other.  相似文献   

10.
The spectral radius of a (directed) graph is the largest eigenvalue of adjacency matrix of the (directed) graph. We give the relation on the characteristic polynomials of a directed graph and its line graph, and obtain sharp bounds on the spectral radius of directed graphs. We also give the relation on the spectral radii of a graph and its line graph. As a consequence, the spectral radius of a connected graph does not exceed that of its line graph except that the graph is a path.  相似文献   

11.
12.
《Discrete Mathematics》2023,346(6):113373
The anti-adjacency matrix of a graph is constructed from the distance matrix of a graph by keeping each row and each column only the largest distances. This matrix can be interpreted as the opposite of the adjacency matrix, which is instead constructed from the distance matrix of a graph by keeping in each row and each column only the distances equal to 1. The (anti-)adjacency eigenvalues of a graph are those of its (anti-)adjacency matrix. Employing a novel technique introduced by Haemers (2019) [9], we characterize all connected graphs with exactly one positive anti-adjacency eigenvalue, which is an analog of Smith's classical result that a connected graph has exactly one positive adjacency eigenvalue iff it is a complete multipartite graph. On this basis, we identify the connected graphs with all but at most two anti-adjacency eigenvalues equal to ?2 and 0. Moreover, for the anti-adjacency matrix we determine the HL-index of graphs with exactly one positive anti-adjacency eigenvalue, where the HL-index measures how large in absolute value may be the median eigenvalues of a graph. We finally propose some problems for further study.  相似文献   

13.
In this article we establish new results on the components of the principal eigenvector in an undirected graph. Those results are particularly significant in relation to the concept of centrality in social networks. In particular degree centrality and eigenvector centrality are compared. We find further conditions, based on the spectral radius, on which nodes with highest degree centrality are also the most eigencentral.  相似文献   

14.
图的可达性矩阵的一种新求法   总被引:1,自引:0,他引:1  
图的可达性矩阵在判断图的强连通性以及求强连通分图中具有重要作用.根据传统求解图的可达性矩阵的特点,在定义链长的基础上,寻求了一种新的计算方法,采用逐次求平方的方法进一步降低计算量.  相似文献   

15.
The index (or spectral radius) of a simple graph is the largest eigenvalue of its adjacency matrix. For connected graphs of fixed order and size the graphs with maximal index are not yet identified (in the general case). It is known (for a long time) that these graphs are nested split graphs (or threshold graphs). In this paper we use the eigenvector techniques for getting some new (lower and upper) bounds on the index of nested split graphs. Besides we give some computational results in order to compare these bounds.  相似文献   

16.
In this paper we introduce the notion of strongly connected polygons in the line graph of a bipartite graph. We use this notion to give a necessary and sufficient condition for a matrix Y to be fully irreducible without the need to construct a transversal of Y. In addition, we show that the notion of strongly connected polygons forms the basis of a general theory that may be used for finding all the cycles in the directed graph of a fully irreducible matrix and for constructing all the nonzero transversals of a fully irreducible matrix.  相似文献   

17.
A random walk can be used as a centrality measure of a directed graph. However, if the graph is reducible the random walk will be absorbed in some subset of nodes and will never visit the rest of the graph. In Google PageRank the problem was solved by the introduction of uniform random jumps with some probability. Up to the present, there is no final answer to the question about the choice of this probability. We propose to use a parameter-free centrality measure which is based on the notion of a quasi-stationary distribution. Specifically, we suggest four quasi-stationary based centrality measures, analyze them and conclude that they produce approximately the same ranking.  相似文献   

18.
We give upper and lower bounds for the spectral radius of a nonnegative matrix using its row sums and characterize the equality cases if the matrix is irreducible. Then we apply these bounds to various matrices associated with a graph, including the adjacency matrix, the signless Laplacian matrix, the distance matrix, the distance signless Laplacian matrix, and the reciprocal distance matrix. Some known results in the literature are generalized and improved.  相似文献   

19.
A graph is said to be determined by the adjacency and Laplacian spectrum (or to be a DS graph, for short) if there is no other non-isomorphic graph with the same adjacency and Laplacian spectrum, respectively. It is known that connected graphs of index less than 2 are determined by their adjacency spectrum. In this paper, we focus on the problem of characterization of DS graphs of index less than 2. First, we give various infinite families of cospectral graphs with respect to the adjacency matrix. Subsequently, the results will be used to characterize all DS graphs (with respect to the adjacency matrix) of index less than 2 with no path as a component. Moreover, we show that most of these graphs are DS with respect to the Laplacian matrix.  相似文献   

20.
We study graphs whose adjacency matrices have determinant equal to 1 or −1, and characterize certain subclasses of these graphs. Graphs whose adjacency matrices are totally unimodular are also characterized. For bipartite graphs having a unique perfect matching, we provide a formula for the inverse of the corresponding adjacency matrix, and address the problem of when that inverse is diagonally similar to a nonnegative matrix. Special attention is paid to the case that such a graph is unicyclic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号