首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
We consider a new class of variational-hemivariational inequalities which arise in the study of quasistatic models of contact. The novelty lies in the special structure of these inequalities, since each inequality of the class involve unilateral constraints, a history-dependent operator and two nondifferentiable functionals, of which at least one is convex. We prove an existence and uniqueness result of the solution. The proof is based on arguments on elliptic variational-hemivariational inequalities obtained in our previous work [23], combined with a fixed point result obtained in [30]. Then, we prove a convergence result which shows the continuous dependence of the solution with respect to the data. Finally, we present a quasistatic frictionless problem for viscoelastic materials in which the contact is modeled with normal compliance and finite penetration and the elasticity operator is associated to a history-dependent Von Mises convex. We prove that the variational formulation of the problem cast in the abstract setting of history-dependent quasivariational inequalities, with a convenient choice of spaces and operators. Then we apply our general results in order to prove the unique weak solvability of the contact problem and its continuous dependence on the data.  相似文献   

2.
We consider a differential quasivariational inequality for which we state and prove the continuous dependence of the solution with respect to the data. This convergence result allows us to prove the existence of at least one optimal pair for an associated control problem. Finally, we illustrate our abstract results in the study of a free boundary problem which describes the equilibrium of a viscoelastic body in frictionless contact with a foundation made of a rigid body covered by a rigid-elastic layer.  相似文献   

3.

We consider a nonlinear initial boundary value problem in a two-dimensional rectangle. We derive variational formulation of the problem which is in the form of an evolutionary variational inequality in a product Hilbert space. Then, we establish the existence of a unique weak solution to the problem and prove the continuous dependence of the solution with respect to some parameters. Finally, we consider a second variational formulation of the problem, the so-called dual variational formulation, which is in a form of a history-dependent inequality associated with a time-dependent convex set. We study the link between the two variational formulations and establish existence, uniqueness, and equivalence results.

  相似文献   

4.
We consider a frictionless contact problem with unilateral constraints for a 2D bar. We describe the problem, then we derive its weak formulation, which is in the form of an elliptic variational inequality of the first kind. Next, we establish the existence of a unique weak solution to the problem and prove its continuous dependence with respect to the applied tractions and constraints. We proceed with the study of an associated control problem for which we prove the existence of an optimal pair. Finally, we consider a perturbed optimal control problem for which we prove a convergence result.  相似文献   

5.
We consider a mathematical model which describes the quasistatic contact between a viscoelastic body and a foundation. The material’s behaviour is modelled with a constitutive law with long memory. The contact is frictional and is modelled with normal compliance and memory term, associated to the Coulomb’s law of dry friction. We present the classical formulation of the problem, list the assumptions on the data and derive a variational formulation of the model. Then we prove the unique weak solvability of the problem. The proof is based on arguments of history-dependent variational inequalities. We also study the dependence of the weak solution with respect to the data and prove a convergence result.  相似文献   

6.
We consider a mathematical model which describes the frictional contact between an electro-elastic–visco-plastic body and a conductive foundation. The contact is modelled with normal compliance and a version of Coulomb’s law of dry friction, in which the stiffness and the friction coefficients depend on the electric potential. We derive a variational formulation of the problem and we prove an existence and uniqueness result. The proof is based on a recent existence and uniqueness result on history-dependent quasivariational inequalities obtained in [15]. Then we introduce a fully discrete scheme for solving the problem and, under certain solution regularity assumptions, we derive an optimal order error estimate. Finally, we present some numerical results in the study of a two-dimensional test problem which describes the process of contact in a microelectromechanical switch.  相似文献   

7.
We consider a mathematical model which describes the dynamic process of contact between a piezoelectric body and an electrically conductive foundation. We model the material’s behavior with a nonlinear electro-viscoelastic constitutive law; the contact is frictionless and is described with the normal compliance condition and a regularized electrical conductivity condition. We derive a variational formulation for the problem and then, under a smallness assumption on the data, we prove the existence of a unique weak solution to the model. We also investigate the behavior of the solution with respect the electric data on the contact surface and prove a continuous dependence result. Then, we introduce a fully discrete scheme, based on the finite element method to approximate the spatial variable and the backward Euler scheme to discretize the time derivatives. We treat the contact by using a penalized approach and a version of Newton’s method. We implement this scheme in a numerical code and, in order to verify its accuracy, we present numerical simulations in the study of two-dimensional test problems. These simulations provide a numerical validation of our continuous dependence result and illustrate the effects of the conductivity of the foundation, as well.  相似文献   

8.
We consider a mathematical model which describes the equilibrium of an elastic body in contact with two obstacles. We derive its weak formulation which is in a form of an elliptic quasi-variational inequality for the displacement field. Then, under a smallness assumption, we establish the existence of a unique weak solution to the problem. We also study the dependence of the solution with respect to the data and prove a convergence result. Finally, we consider an optimization problem associated with the contact model for which we prove the existence of a minimizer and a convergence result, as well.  相似文献   

9.
We consider a class of subdifferential inclusions involving a history-dependent term for which we provide an existence and uniqueness result. The proof is based on arguments on pseudomonotone operators and fixed point. Then we specialize this result in the study of a class of history-dependent hemivariational inequalities. Such kind of problems arises in a large number of mathematical models which describe quasistatic processes of contact between a deformable body and an obstacle, the so-called foundation. To provide an example we consider a viscoelastic problem in which the frictional contact is modeled with subdifferential boundary conditions. We prove that this problem leads to a history-dependent hemivariational inequality in which the unknown is the velocity field. Then we apply our abstract result in order to prove the unique weak solvability of the corresponding contact problem.  相似文献   

10.
We consider a mathematical model which describes the frictional contact between a piezoelectric body and an electrically conductive foundation. The process is quasistatic, the material behavior is modeled with an electro-viscoelastic constitutive law and the contact is described with subdifferential boundary conditions. We derive the variational formulation of the problem which is in the form of a system involving two history-dependent hemivariational inequalities in which the unknowns are the velocity and electric potential field. Then we prove the existence of a unique weak solution to the model. The proof is based on a recent result on history-dependent hemivariational inequalities obtained in Migórski et al. (submitted for publication) [16].  相似文献   

11.
We consider an abstract class of variational–hemivariational inequalities which arise in the study of a large number of mathematical models of contact. The novelty consists in the structure of the inequalities which involve two history-dependent operators and two nondifferentiable functionals, a convex and a nonconvex one. For these inequalities we provide an existence and uniqueness result of the solution. The proof is based on arguments of surjectivity for pseudomonotone operators and fixed point. Then, we consider a viscoelastic problem in which the contact is frictionless and is modeled with a new boundary condition which describes both the instantaneous and the memory effects of the foundation. We prove that this problem leads to a history-dependent variational–hemivariational inequality in which the unknown is the displacement field. We apply our abstract result in order to prove the unique weak solvability of this viscoelastic contact problem.  相似文献   

12.
On the Stability of Generalized Vector Quasivariational Inequality Problems   总被引:4,自引:0,他引:4  
In this paper, we obtain some stability results for generalized vector quasivariational inequality problems. We prove that the solution set is a closed set and establish the upper semicontinuity property of the solution set for perturbed generalized vector quasivariational inequality problems. These results extend those obtained in Ref. 1. We obtain also the lower semicontinuity property of the solution set for perturbed classical variational inequalities. Several examples are given for the illustration of our results.  相似文献   

13.
We consider the semicontinuity of the solution set and the approximate solution set of parametric multivalued quasivariational inequalities in topological vector spaces. Three kinds of problems arising from the multivalued situation are investigated. A rather complete picture, which is symmetric for the two kinds of semicontinuity (lower and upper semicontinuity) and for the three kinds of multivalued quasivariational inequality problems, is supplied. Moreover, we use a simple technique to prove the results. The results obtained improve several known ones in the literature. This research was partially supported by the National Basic Research Program in Natural Sciences of Vietnam. The final part of this work was completed during a stay of the first author at the Department of Mathematics, University of Pau, Pau, France, and its hospitality is acknowledged.  相似文献   

14.
We start with a mathematical model which describes the frictionless contact of an elastic body with an obstacle and prove that it leads to a stationary inclusion for the strain field. Then, inspired by this contact model, we consider a general stationary inclusion in a real Hilbert space, governed by three parameters. We prove the unique solvability of the inclusion as well as the continuous dependence of its solution with respect to the parameters. We use these results in the study of an associated optimal control problem for which we prove existence and convergence results. The proofs are based on arguments of monotonicity, compactness, convex analysis and lower semicontinuity. Then, we apply these abstract results to the mathematical model of contact and provide the corresponding mechanical interpretations.  相似文献   

15.
In this paper, we prove a local existence and uniqueness result for fuzzy delay differential equations driven by Liu process. We also establish continuous dependence of solution with respect to initial data.  相似文献   

16.
In this paper we consider optimization problems defined by a quadratic objective function and a finite number of quadratic inequality constraints. Given that the objective function is bounded over the feasible set, we present a comprehensive study of the conditions under which the optimal solution set is nonempty, thus extending the so-called Frank-Wolfe theorem. In particular, we first prove a general continuity result for the solution set defined by a system of convex quadratic inequalities. This result implies immediately that the optimal solution set of the aforementioned problem is nonempty when all the quadratic functions involved are convex. In the absence of the convexity of the objective function, we give examples showing that the optimal solution set may be empty either when there are two or more convex quadratic constraints, or when the Hessian of the objective function has two or more negative eigenvalues. In the case when there exists only one convex quadratic inequality constraint (together with other linear constraints), or when the constraint functions are all convex quadratic and the objective function is quasi-convex (thus allowing one negative eigenvalue in its Hessian matrix), we prove that the optimal solution set is nonempty.  相似文献   

17.
We start with a mathematical model which describes the sliding contact of a viscoelastic body with a moving foundation. The contact is frictional and the wear of the contact surfaces is taken into account. We prove that this model leads to a differential variational inequality in which the unknowns are the displacement field and the wear function. Then, inspired by this model, we consider a general differential variational inequality in reflexive Banach spaces, governed by four parameters. We prove the unique solvability of the inequality as well as the continuous dependence of its solution with respect to the parameters. The proofs are based on arguments of monotonicity, compactness, convex analysis and lower semicontinuity. Then, we apply these abstract results to the mathematical model of contact for which we deduce the existence of a unique solution as well as the existence of optimal control for an associate optimal control problem. We also present the corresponding mechanical interpretations.  相似文献   

18.
We consider a controlled functional-operator equation that is a convenient form for describing of controlled initial-boundary value problems. For this equation, considered in a Banach ideal space, we define the set Ω of global solvability as the set of all admissible controls for which the equation has a global solution. We show that Ω is convex under the conditions imposed on the right-hand side of the equation. For each control in a given segment in Ω, we obtain a two-sided pointwise estimate for the corresponding solution under the abovementioned assumptions. We prove the theorem on the convex continuous dependence of the solution on the parameter specifying the displacement along the segment.  相似文献   

19.
We consider a mathematical model which describes the stationary flow of a Bingham fluid with friction. The frictional contact is modeled by a general velocity dependent dissipation functional. We derive a weak formulation of the model which consists in a variational inequality for the velocity field. We establish the existence and uniqueness of the weak solution as well as its continuous dependence with respect to the contact condition. Finally, we describe a number of concrete friction conditions which may be set in this general framework and for which our results apply.  相似文献   

20.

In this paper we consider the class of mathematical programs with complementarity constraints (MPCC). Under an appropriate constraint qualification of Mangasarian–Fromovitz type we present a topological and an equivalent algebraic characterization of a strongly stable C-stationary point for MPCC. Strong stability refers to the local uniqueness, existence and continuous dependence of a solution for each sufficiently small perturbed problem where perturbations up to second order are allowed. This concept of strong stability was originally introduced by Kojima for standard nonlinear optimization; here, its generalization to MPCC demands a sophisticated technique which takes the disjunctive properties of the solution set of MPCC into account.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号