首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Discrete Mathematics》2022,345(10):112971
We develop the theory of pretty good fractional revival in quantum walks on graphs using their Laplacian matrices as the Hamiltonian. We classify the paths and the double stars that have Laplacian pretty good fractional revival.  相似文献   

2.
We study entanglement properties of mixed density matrices obtained from combinatorial Laplacians. This is done by introducing the notion of the density matrix of a graph. We characterize the graphs with pure density matrices and show that the density matrix of a graph can be always written as a uniform mixture of pure density matrices of graphs. We consider the von Neumann entropy of these matrices and we characterize the graphs for which the minimum and maximum values are attained. We then discuss the problem of separability by pointing out that separability of density matrices of graphs does not always depend on the labelling of the vertices. We consider graphs with a tensor product structure and simple cases for which combinatorial properties are linked to the entanglement of the state. We calculate the concurrence of all graphs on four vertices representing entangled states. It turns out that for these graphs the value of the concurrence is exactly fractional. Received July 28, 2004  相似文献   

3.
Chai Wah Wu 《Discrete Mathematics》2010,310(21):2811-2814
Normalized Laplacian matrices of graphs have recently been studied in the context of quantum mechanics as density matrices of quantum systems. Of particular interest is the relationship between quantum physical properties of the density matrix and the graph theoretical properties of the underlying graph. One important aspect of density matrices is their entanglement properties, which are responsible for many nonintuitive physical phenomena. The entanglement property of normalized Laplacian matrices is in general not invariant under graph isomorphism. In recent papers, graphs were identified whose entanglement and separability properties are invariant under isomorphism. The purpose of this note is to completely characterize the set of graphs whose separability is invariant under graph isomorphism. In particular, we show that this set consists of K2,2 and its complement, all complete graphs and no other graphs.  相似文献   

4.
We show that a number of graph invariants are, even combined, insufficient to distinguish between non-isomorphic trees or general graphs. Among these are: the spectrum of eigenvalues (equivalently, the characteristic polynomial), the number of independent sets of all sizes or the number of connected subgraphs of all sizes. We therefore extend the classical theorem of Schwenk that almost every tree has a cospectral mate, and we provide an answer to a question of Jamison on average subtree orders of trees. The simple construction that we apply for this purpose is based on finding graphs with two distinguished vertices (called pseudosimilar) that do not belong to the same orbit but whose removal yields isomorphic graphs.  相似文献   

5.
An orthogonal representation of a graph is an assignment of nonzero real vectors to its vertices such that distinct non-adjacent vertices are assigned to orthogonal vectors. We prove general lower bounds on the dimension of orthogonal representations of graphs using the Borsuk–Ulam theorem from algebraic topology. Our bounds strengthen the Kneser conjecture, proved by Lovász in 1978, and some of its extensions due to Bárány, Schrijver, Dol’nikov, and Kriz. As applications, we determine the integrality gap of fractional upper bounds on the Shannon capacity of graphs and the quantum one-round communication complexity of certain promise equality problems.  相似文献   

6.
We give a bound on the sizes of two sets of vertices at a given minimum distance in a graph in terms of polynomials and the Laplace spectrum of the graph. We obtain explicit bounds on the number of vertices at maximal distance and distance two from a given vertex, and on the size of two equally large sets at maximal distance. For graphs with four eigenvalues we find bounds on the number of vertices that are not adjacent to a given vertex and that have µ common neighbours with that vertex. Furthermore we find that the regular graphs for which the bounds are tight come from association schemes.  相似文献   

7.
Infinite quantum graphs with δ-interactions at vertices are studied without any assumptions on the lengths of edges of the underlying metric graphs. A connection between spectral properties of a quantum graph and a certain discrete Laplacian given on a graph with infinitely many vertices and edges is established. In particular, it is shown that these operators are self-adjoint, lower semibounded, nonnegative, discrete, etc. only simultaneously.  相似文献   

8.
Distance labeling schemes are schemes that label the vertices of a graph with short labels in such a way that the distance between any two vertices u and v can be determined efficiently (e.g., in constant or logarithmic time) by merely inspecting the labels of u and v, without using any other information. Similarly, routing labeling schemes are schemes that label the vertices of a graph with short labels in such a way that given the label of a source vertex and the label of a destination, it is possible to compute efficiently (e.g., in constant or logarithmic time) the port number of the edge from the source that heads in the direction of the destination. In this paper we show that the three major classes of non-positively curved plane graphs enjoy such distance and routing labeling schemes using O(log2n) bit labels on n-vertex graphs. In constructing these labeling schemes interesting metric properties of those graphs are employed.  相似文献   

9.
Spectra and representations of some special weighted graphs are investigated with weight matrices consisting of homogeneous blocks. It is proved that a random perturbation of the weight matrix or that of the weighted Laplacian with a “Wigner-noise” will not have an effect on the order of the protruding eigenvalues and the representatives of the vertices will unveil the underlying block-structure.Such random graphs adequately describe some biological and social networks, the vertices of which belong either to loosely connected strata or to clusters with homogeneous edge-densities between any two of them, like the structure guaranteed by the Regularity Lemma of Szemerédi.  相似文献   

10.
t-Pebbling and Extensions   总被引:1,自引:0,他引:1  
Graph pebbling is the study of moving discrete pebbles from certain initial distributions on the vertices of a graph to various target distributions via pebbling moves. A pebbling move removes two pebbles from a vertex and places one pebble on one of its neighbors (losing the other as a toll). For t ≥ 1 the t-pebbling number of a graph is the minimum number of pebbles necessary so that from any initial distribution of them it is possible to move t pebbles to any vertex. We provide the best possible upper bound on the t-pebbling number of a diameter two graph, proving a conjecture of Curtis et al., in the process. We also give a linear time (in the number of edges) algorithm to t-pebble such graphs, as well as a quartic time (in the number of vertices) algorithm to compute the pebbling number of such graphs, improving the best known result of Bekmetjev and Cusack. Furthermore, we show that, for complete graphs, cycles, trees, and cubes, we can allow the target to be any distribution of t pebbles without increasing the corresponding t-pebbling numbers; we conjecture that this behavior holds for all graphs. Finally, we explore fractional and optimal fractional versions of pebbling, proving the fractional pebbling number conjecture of Hurlbert and using linear optimization to reveal results on the optimal fractional pebbling number of vertex-transitive graphs.  相似文献   

11.
The fractional and circular chromatic numbers are the two most studied non-integral refinements of the chromatic number of a graph. Starting from the definition of a coloring base of a graph, which originated in work related to ergodic theory, we formalize the notion of a gyrocoloring of a graph: the vertices are colored by translates of a single Borel set in the circle group, and neighboring vertices receive disjoint translates. The corresponding gyrochromatic number of a graph always lies between the fractional chromatic number and the circular chromatic number. We investigate basic properties of gyrocolorings. In particular, we construct examples of graphs whose gyrochromatic number is strictly between the fractional chromatic number and the circular chromatic number. We also establish several equivalent definitions of the gyrochromatic number, including a version involving all finite abelian groups.  相似文献   

12.
Motivated by the construction of invariants of links in 3-space, we study spin models on graphs for which all edge weights (considered as matrices) belong to the Bose-Mesner algebra of some association scheme. We show that for series-parallel graphs the computation of the partition function can be performed by using series-parallel reductions of the graph appropriately coupled with operations in the Bose-Mesner algebra. Then we extend this approach to all plane graphs by introducing star-triangle transformations and restricting our attention to a special class of Bose-Mesner algebras which we call exactly triply regular. We also introduce the following two properties for Bose-Mesner algebras. The planar duality property (defined in the self-dual case) expresses the partition function for any plane graph in terms of the partition function for its dual graph, and the planar reversibility property asserts that the partition function for any plane graph is equal to the partition function for the oppositely oriented graph. Both properties hold for any Bose-Mesner algebra if one considers only series-parallel graphs instead of arbitrary plane graphs. We relate these notions to spin models for link invariants, and among other results we show that the Abelian group Bose-Mesner algebras have the planar duality property and that for self-dual Bose-Mesner algebras, planar duality implies planar reversibility. We also prove that for exactly triply regular Bose-Mesner algebras, to check one of the above properties it is sufficient to check it on the complete graph on four vertices. A number of applications, examples and open problems are discussed.  相似文献   

13.
Construct a graph as follows. Take a circle, and a collection of intervals from it, no three of which have union the entire circle; take a finite set of points V from the circle; and make a graph with vertex set V in which two vertices are adjacent if they both belong to one of the intervals. Such graphs are “long circular interval graphs,” and they form an important subclass of the class of all claw-free graphs. In this paper we characterize them by excluded induced subgraphs. This is a step towards the main goal of this series, to find a structural characterization of all claw-free graphs.This paper also gives an analysis of the connected claw-free graphs G with a clique the deletion of which disconnects G into two parts both with at least two vertices.  相似文献   

14.
《Discrete Mathematics》2023,346(6):113362
The study of perfect state transfer on graphs has attracted a great deal of attention during the past ten years because of its applications to quantum information processing and quantum computation. Perfect state transfer is understood to be a rare phenomenon. This paper establishes necessary and sufficient conditions for a bi-Cayley graph having a perfect state transfer over any given finite abelian group. As corollaries, many known and new results are obtained on Cayley graphs having perfect state transfer over abelian groups, (generalized) dihedral groups, semi-dihedral groups and generalized quaternion groups. Especially, we give an example of a connected non-normal Cayley graph over a dihedral group having perfect state transfer between two distinct vertices, which was thought impossible.  相似文献   

15.
We consider the minimum number of cliques needed to partition the edge set of D(G), the distance multigraph of a simple graph G. Equivalently, we seek to minimize the number of elements needed to label the vertices of a simple graph G by sets so that the distance between two vertices equals the cardinality of the intersection of their labels. We use a fractional analogue of this parameter to find lower bounds for the distance multigraphs of various classes of graphs. Some of the bounds are shown to be exact.  相似文献   

16.
一个关于图是分数(k,n)-临界的邻域并条件   总被引:1,自引:0,他引:1  
设G是一个图,以及k是满足1≤k的整数.一个图G在删除任意n个顶点后的子图均含有分数k-因子,则称G是一个分数(k,n)-临界图.给出了图是一个分数(k,n)-临界图的一个邻域并条件,并且该条件是最佳的.  相似文献   

17.
Let G be a nontrivial connected and vertex-colored graph. A subset X of the vertex set of G is called rainbow if any two vertices in X have distinct colors. The graph G is called rainbow vertex-disconnected if for any two vertices x and y of G, there exists a vertex subset S of G such that when x and y are nonadjacent, S is rainbow and x and y belong to different components of G-S; whereas when x and y are adjacent, S + x or S + y is rainbow and x and y belong to different components of(G-xy)-S. For a connected graph G, the rainbow vertex-disconnection number of G, denoted by rvd(G), is the minimum number of colors that are needed to make G rainbow vertexdisconnected. In this paper, we characterize all graphs of order n with rainbow vertex-disconnection number k for k ∈ {1, 2, n}, and determine the rainbow vertex-disconnection numbers of some special graphs. Moreover, we study the extremal problems on the number of edges of a connected graph G with order n and rvd(G) = k for given integers k and n with 1 ≤ k ≤ n.  相似文献   

18.
图G的Harary指数是指图G中所有顶点对间的距离倒数之和. 三圈图是指边数等于顶点数加2的连通图. 研究了三圈图的Harary数, 给出了所有三圈图中具有极大Harary指数的图的结构以及含有三个圈的三圈图中具有次大Harary指数的图的结构.  相似文献   

19.
20.
The center of a graph is the set of vertices with minimum eccentricity. Graphs in which all vertices are central are called self-centered graphs. In this paper almost self-centered (ASC) graphs are introduced as the graphs with exactly two non-central vertices. The block structure of these graphs is described and constructions for generating such graphs are proposed. Embeddings of arbitrary graphs into ASC graphs are studied. In particular it is shown that any graph can be embedded into an ASC graph of prescribed radius. Embeddings into ASC graphs of radius two are studied in more detail. ASC index of a graph G is introduced as the smallest number of vertices needed to add to G such that G is an induced subgraph of an ASC graph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号