首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Let \(\varphi \) be an arbitrary linear-fractional self-map of the unit disk \({\mathbb {D}}\) and consider the composition operator \(C_{-1, \varphi }\) and the Toeplitz operator \(T_{-1,z}\) on the Hardy space \(H^2\) and the corresponding operators \(C_{\alpha , \varphi }\) and \(T_{\alpha , z}\) on the weighted Bergman spaces \(A^2_{\alpha }\) for \(\alpha >-1\). We prove that the unital C\(^*\)-algebra \(C^*(T_{\alpha , z}, C_{\alpha , \varphi })\) generated by \(T_{\alpha , z}\) and \(C_{\alpha , \varphi }\) is unitarily equivalent to \(C^*(T_{-1, z}, C_{-1, \varphi }),\) which extends a known result for automorphism-induced composition operators. For maps \(\varphi \) that are not automorphisms of \({\mathbb {D}}\), we show that \(C^*(C_{\alpha , \varphi }, {\mathcal {K}}_{\alpha })\) is unitarily equivalent to \(C^*(C_{-1, \varphi }, {\mathcal {K}}_{-1})\), where \({\mathcal {K}}_{\alpha }\) and \({\mathcal {K}}_{-1}\) denote the ideals of compact operators on \(A^2_{\alpha }\) and \(H^2\), respectively, and apply existing structure theorems for \(C^*(C_{-1, \varphi }, {\mathcal {K}}_{-1})/{\mathcal {K}}_{-1}\) to describe the structure of \(C^*(C_{\alpha , \varphi }, {\mathcal {K}}_{\alpha })/\mathcal {K_{\alpha }}\), up to isomorphism. We also establish a unitary equivalence between related weighted composition operators induced by maps \(\varphi \) that fix a point on the unit circle.  相似文献   

2.
3.
Motivated by applications in the field of shape analysis, we study reparametrization invariant, fractional order Sobolev-type metrics on the space of smooth regular curves \(\mathrm {Imm}(\mathrm {S}^{1},\mathbb {R}^d)\) and on its Sobolev completions \({\mathcal {I}}^{q}(\mathrm {S}^{1},{\mathbb {R}}^{d})\). We prove local well-posedness of the geodesic equations both on the Banach manifold \({\mathcal {I}}^{q}(\mathrm {S}^{1},{\mathbb {R}}^{d})\) and on the Fréchet-manifold \(\mathrm {Imm}(\mathrm {S}^{1},\mathbb {R}^d)\) provided the order of the metric is greater or equal to one. In addition we show that the \(H^s\)-metric induces a strong Riemannian metric on the Banach manifold \({\mathcal {I}}^{s}(\mathrm {S}^{1},{\mathbb {R}}^{d})\) of the same order s, provided \(s>\frac{3}{2}\). These investigations can be also interpreted as a generalization of the analysis for right invariant metrics on the diffeomorphism group.  相似文献   

4.
Let \({\mathcal L}\equiv-\Delta+V\) be the Schrödinger operator in \({{\mathbb R}^n}\), where V is a nonnegative function satisfying the reverse Hölder inequality. Let ρ be an admissible function modeled on the known auxiliary function determined by V. In this paper, the authors characterize the localized Hardy spaces \(H^1_\rho({{\mathbb R}^n})\) in terms of localized Riesz transforms and establish the boundedness on the BMO-type space \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) of these operators as well as the boundedness from \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) to \({\mathop\mathrm{BLO_\rho({\mathbb R}^n)}}\) of their corresponding maximal operators, and as a consequence, the authors obtain the Fefferman–Stein decomposition of \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) via localized Riesz transforms. When ρ is the known auxiliary function determined by V, \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) is just the known space \(\mathop\mathrm{BMO}_{\mathcal L}({{\mathbb R}^n})\), and \({\mathop\mathrm{BLO_\rho({\mathbb R}^n)}}\) in this case is correspondingly denoted by \(\mathop\mathrm{BLO}_{\mathcal L}({{\mathbb R}^n})\). As applications, when n?≥?3, the authors further obtain the boundedness on \(\mathop\mathrm{BMO}_{\mathcal L}({{\mathbb R}^n})\) of Riesz transforms \(\nabla{\mathcal L}^{-1/2}\) and their adjoint operators, as well as the boundedness from \(\mathop\mathrm{BMO}_{\mathcal L}({{\mathbb R}^n})\) to \(\mathop\mathrm{BLO}_{\mathcal L}({{\mathbb R}^n})\) of their maximal operators. Also, some endpoint estimates of fractional integrals associated to \({\mathcal L}\) are presented.  相似文献   

5.
We provide a categorification of \(\mathfrak {q}(2)\)-crystals on the singular \(\mathfrak {gl}_{n}\)-category \({\mathcal O}_{n}\). Our result extends the \(\mathfrak {gl}_{2}\)-crystal structure on \(\text {Irr} ({\mathcal O}_{n})\) induced from the work of Bernstein-Frenkel-Khovanov. Further properties of the \({\mathfrak q}(2)\)-crystal \(\text {Irr} ({\mathcal O}_{n})\) are also discussed.  相似文献   

6.
Let \({\mathcal {M}}_{mn}={\mathcal {M}}_{mn}({\mathbb {F}})\) denote the set of all \(m\times n\) matrices over a field \({\mathbb {F}}\), and fix some \(n\times m\) matrix \(A\in {\mathcal {M}}_{nm}\). An associative operation \(\star \) may be defined on \({\mathcal {M}}_{mn}\) by \(X\star Y=XAY\) for all \(X,Y\in {\mathcal {M}}_{mn}\), and the resulting sandwich semigroup is denoted \({\mathcal {M}}_{mn}^A={\mathcal {M}}_{mn}^A({\mathbb {F}})\). These semigroups are closely related to Munn rings, which are fundamental tools in the representation theory of finite semigroups. We study \({\mathcal {M}}_{mn}^A\) as well as its subsemigroups \(\hbox {Reg}({\mathcal {M}}_{mn}^A)\) and \({\mathcal {E}}_{mn}^A\) (consisting of all regular elements and products of idempotents, respectively), and the ideals of \(\hbox {Reg}({\mathcal {M}}_{mn}^A)\). Among other results, we characterise the regular elements; determine Green’s relations and preorders; calculate the minimal number of matrices (or idempotent matrices, if applicable) required to generate each semigroup we consider; and classify the isomorphisms between finite sandwich semigroups \({\mathcal {M}}_{mn}^A({\mathbb {F}}_1)\) and \({\mathcal {M}}_{kl}^B({\mathbb {F}}_2)\). Along the way, we develop a general theory of sandwich semigroups in a suitably defined class of partial semigroups related to Ehresmann-style “arrows only” categories; we hope this framework will be useful in studies of sandwich semigroups in other categories. We note that all our results have applications to the variants \({\mathcal {M}}_n^A\) of the full linear monoid \({\mathcal {M}}_n\) (in the case \(m=n\)), and to certain semigroups of linear transformations of restricted range or kernel (in the case that \(\hbox {rank}(A)\) is equal to one of mn).  相似文献   

7.
Suppose that \({\mathcal {M}}\) is a countably decomposable type II\({_1}\) von Neumann algebra and \({\mathcal {A}}\) is a separable, non-nuclear, unital C\({^*}\)-algebra. We show that, if \({\mathcal {M}}\) has Property \({\Gamma}\), then the similarity degree of \({\mathcal {M}}\) is less than or equal to 5. If \({\mathcal {A}}\) has Property c\({^*}\)-\({\Gamma}\), then the similarity degree of \({\mathcal {A}}\) is equal to 3. In particular, the similarity degree of a \({\mathcal {Z}}\)-stable, separable, non-nuclear, unital C\({^*}\)-algebra is equal to 3.  相似文献   

8.
A functional distance \({\mathbb H}\), based on the Hausdorff metric between the function hypographs, is proposed for the space \({\mathcal E}\) of non-negative real upper semicontinuous functions on a compact interval. The main goal of the paper is to show that the space \(({\mathcal E},{\mathbb H})\) is particularly suitable in some statistical problems with functional data which involve functions with very wiggly graphs and narrow, sharp peaks. A typical example is given by spectrograms, either obtained by magnetic resonance or by mass spectrometry. On the theoretical side, we show that \(({\mathcal E},{\mathbb H})\) is a complete, separable locally compact space and that the \({\mathbb H}\)-convergence of a sequence of functions implies the convergence of the respective maximum values of these functions. The probabilistic and statistical implications of these results are discussed, in particular regarding the consistency of k-NN classifiers for supervised classification problems with functional data in \({\mathbb H}\). On the practical side, we provide the results of a small simulation study and check also the performance of our method in two real data problems of supervised classification involving mass spectra.  相似文献   

9.
We define a tower of injections of \(\tilde{C}\)-type Coxeter groups \(W({\tilde{C}}_{n})\) for \(n\ge 1\). We define a tower of Hecke algebras, and we use the faithfulness at the Coxeter level to show that this last tower is a tower of injections. Let \(W^c({\tilde{C}}_{n})\) be the set of fully commutative elements in \(W({\tilde{C}}_{n})\), we classify the elements of \(W^c({\tilde{C}}_{n})\) and give a normal form for them. We use this normal form to define two injections from \(W^c({\tilde{C}}_{n-1})\) into \(W^c({\tilde{C}}_{n})\). We then define the tower of affine Temperley–Lieb algebras of type \(\tilde{C }\) and use the injections above to prove the faithfulness of this tower.  相似文献   

10.
The moduli space \({\mathcal {M}}_{g}\), of genus \(g\ge 2\) closed Riemann surfaces, is a complex orbifold of dimension \(3(g-1)\) which carries a natural real structure, i.e. it admits an anti-holomorphic involution \(\sigma \). The involution \(\sigma \) maps each point corresponding to a Riemann surface S to its complex conjugate \(\overline{S}\). The fixed point set of \(\sigma \) consists of the isomorphism classes of closed Riemann surfaces admitting an anticonformal automorphism. Inside \(\mathrm {Fix}(\sigma )\) is the locus \({\mathcal {M}}_{g}(\mathbb {R})\), the set of real Riemann surfaces, which is known to be connected by results due to P. Buser, M. Seppälä, and R. Silhol. The complement \(\mathrm {Fix}(\sigma )-{\mathcal {M}}_{g}(\mathbb {R})\) consists of the so called pseudo-real Riemann surfaces, which is known to be non-connected. In this short note we provide a simple argument to observe that \(\mathrm {Fix}(\sigma )\) is connected.  相似文献   

11.
For a commutative C*-algebra \({\mathcal {A}}\) with unit e and a Hilbert \({\mathcal {A}}\)-module \({\mathcal {M}}\), denote by End\(_{{\mathcal {A}}}({\mathcal {M}})\) the algebra of all bounded \({\mathcal {A}}\)-linear mappings on \({\mathcal {M}}\), and by End\(^*_{{\mathcal {A}}}({\mathcal {M}})\) the algebra of all adjointable mappings on \({\mathcal {M}}\). We prove that if \({\mathcal {M}}\) is full, then each derivation on End\(_{{\mathcal {A}}}({\mathcal {M}})\) is \({\mathcal {A}}\)-linear, continuous, and inner, and each 2-local derivation on End\(_{{\mathcal {A}}}({\mathcal {M}})\) or End\(^{*}_{{\mathcal {A}}}({\mathcal {M}})\) is a derivation. If there exist \(x_0\) in \({\mathcal {M}}\) and \(f_0\) in \({\mathcal {M}}^{'}\), such that \(f_0(x_0)=e\), where \({\mathcal {M}}^{'}\) denotes the set of all bounded \({\mathcal {A}}\)-linear mappings from \({\mathcal {M}}\) to \({\mathcal {A}}\), then each \({\mathcal {A}}\)-linear local derivation on End\(_{{\mathcal {A}}}({\mathcal {M}})\) is a derivation.  相似文献   

12.
In this paper we investigate the existence of “partially” isometric immersions. These are maps \({f:M\rightarrow \mathbb{R}^q}\) which, for a given Riemannian manifold M, are isometries on some sub-bundle \({\mathcal{H}\subset TM}\). The concept of free maps, which is essential in the Nash–Gromov theory of isometric immersions, is replaced here by that of \({\mathcal{H}}\) –free maps, i.e. maps whose restriction to \({\mathcal{H}}\) is free. We prove, under suitable conditions on the dimension q of the Euclidean space, that \({\mathcal{H}}\) –free maps are generic and we provide, for the smallest possible value of q, explicit expressions for \({\mathcal{H}}\) –free maps in the following three settings: 1–dimensional distributions in \({\mathbb{R}^2}\), Lagrangian distributions of completely integrable systems, Hamiltonian distributions of a particular kind of Poisson Bracket.  相似文献   

13.
As a generalization of completely regular semigroups, which can be written as \({\mathcal{(G \circ RB) \circ S}}\) where \({\mathcal{G}}\), \({\mathcal{RB}}\) and \({\mathcal S}\) are the varieties of groups, rectangular bands and semilattices, respectively, we have replaced \({\mathcal G}\) by the class \({\mathcal M}\) of monoids. This calls for finding the structure of such semigroups, and, as a first step, characterizations.  相似文献   

14.
We prove a Beurling-Blecher-Labuschagne theorem for \({H^\infty}\)-invariant spaces of \({L^p(\mathcal{M},\tau)}\) when \({0 < p \leq\infty}\), using Arveson’s non-commutative Hardy space \({H^\infty}\) in relation to a von Neumann algebra \({\mathcal{M}}\) with a semifinite, faithful, normal tracial weight \({\tau}\). Using the main result, we are able to completely characterize all \({H^\infty}\)-invariant subspaces of \({L^p(\mathcal{M} \rtimes_\alpha \mathbb{Z},\tau)}\), where \({\mathcal{M} \rtimes_\alpha \mathbb{Z} }\) is a crossed product of a semifinite von Neumann algebra \({\mathcal{M}}\) by the integer group \({\mathbb{Z}}\), and \({H^\infty}\) is a non-selfadjoint crossed product of \({\mathcal{M}}\) by \({\mathbb{Z}^+}\). As an example, we characterize all \({H^\infty}\)-invariant subspaces of the Schatten p-class \({S^p(\mathcal{H})}\), where \({H^\infty}\) is the lower triangular subalgebra of \({B(\mathcal{H})}\), for each \({0 < p \leq\infty}\).  相似文献   

15.
Let \(\mathcal {R}\) be a prime ring, \(\mathcal {Z(R)}\) its center, \(\mathcal {C}\) its extended centroid, \(\mathcal {L}\) a Lie ideal of \(\mathcal {R}, \mathcal {F}\) a generalized skew derivation associated with a skew derivation d and automorphism \(\alpha \). Assume that there exist \(t\ge 1\) and \(m,n\ge 0\) fixed integers such that \( vu = u^m\mathcal {F}(uv)^tu^n\) for all \(u,v \in \mathcal {L}\). Then it is shown that either \(\mathcal {L}\) is central or \(\mathrm{char}(\mathcal {R})=2, \mathcal {R}\subseteq \mathcal {M}_2(\mathcal {C})\), the ring of \(2\times 2\) matrices over \(\mathcal {C}, \mathcal {L}\) is commutative and \(u^2\in \mathcal {Z(R)}\), for all \(u\in \mathcal {L}\). In particular, if \(\mathcal {L}=[\mathcal {R,R}]\), then \(\mathcal {R}\) is commutative.  相似文献   

16.
We study packing problems with matroid structures, which includes the strength of a graph of Cunningham and scheduling problems. If \(\mathcal {M}\) is a matroid over a set of elements S with independent set \(\mathcal {I}\), and \(m=|S|\), we suppose that we are given an oracle function that takes an independent set \(A\in \mathcal {I}\) and an element \(e\in S\) and determines if \(A\cup \{e\}\) is independent in time I(m). Also, given that the elements of A are represented in an ordered way \(A=\{A_1,\dots ,A_k\}\), we denote the time to check if \(A\cup \{e\}\notin \mathcal {I}\) and if so, to find the minimum \(i\in \{0,\dots ,k\}\) such that \(\{A_1,\dots ,A_i\}\cup \{e\}\notin \mathcal {I}\) by \(I^*(m)\). Then, we describe a new FPTAS that computes for any \(\varepsilon >0\) and for any matroid \(\mathcal {M}\) of rank r over a set S of m elements, in memory space O(m), the packing \(\varLambda ({\mathcal {M}})\) within \(1+\varepsilon \) in time \(O(mI^*(m)\log (m)\log (m/r)/\varepsilon ^2)\), and the covering \(\varUpsilon ({\mathcal {M}})\) in time \(O(r\varUpsilon ({\mathcal {M}})I(m)\log (m)\log (m/r)/\varepsilon ^2)\). This method outperforms in time complexity by a factor of \(\varOmega (m/r)\) the FPTAS of Plotkin, Shmoys, and Tardos, and a factor of \(\varOmega (m)\) the FPTAS of Garg and Konemann. On top of the value of the packing and the covering, our algorithm exhibits a combinatorial object that proves the approximation. The applications of this result include graph partitioning, minimum cuts, VLSI computing, job scheduling and others.  相似文献   

17.
Let \(U'_q(\mathfrak {g})\) be a twisted affine quantum group of type \(A_{N}^{(2)}\) or \(D_{N}^{(2)}\) and let \(\mathfrak {g}_{0}\) be the finite-dimensional simple Lie algebra of type \(A_{N}\) or \(D_{N}\). For a Dynkin quiver of type \(\mathfrak {g}_{0}\), we define a full subcategory \({\mathcal C}_{Q}^{(2)}\) of the category of finite-dimensional integrable \(U'_q(\mathfrak {g})\)-modules, a twisted version of the category \({\mathcal C}^{(1)}_{Q}\) introduced by Hernandez and Leclerc. Applying the general scheme of affine Schur–Weyl duality, we construct an exact faithful KLR-type duality functor \({\mathcal F}_{Q}^{(2)}:\mathrm{Rep}(R) \rightarrow {\mathcal C}_{Q}^{(2)}\), where \(\mathrm{Rep}(R)\) is the category of finite-dimensional modules over the quiver Hecke algebra R of type \(\mathfrak {g}_{0}\) with nilpotent actions of the generators \(x_k\). We show that \({\mathcal F}_{Q}^{(2)}\) sends any simple object to a simple object and induces a ring isomorphism Open image in new window .  相似文献   

18.
Let \(G=G(k)\) be a connected reductive group over a p-adic field k. The smooth (and tempered) complex representations of G can be considered as the nondegenerate modules over the Hecke algebra \({\mathcal {H}}={\mathcal {H}}(G)\) and the Schwartz algebra \({\mathcal {S}}={\mathcal {S}}(G)\) forming abelian categories \({\mathcal {M}}(G)\) and \({\mathcal {M}}^t(G)\), respectively. Idempotents \(e\in {\mathcal {H}}\) or \({\mathcal {S}}\) define full subcategories \({\mathcal {M}}_e(G)= \{V : {\mathcal {H}}eV=V\}\) and \({\mathcal {M}}_e^t(G)= \{V : {\mathcal {S}}eV=V\}\). Such an e is said to be special (in \({\mathcal {H}}\) or \({\mathcal {S}}\)) if the corresponding subcategory is abelian. Parallel to Bernstein’s result for \(e\in {\mathcal {H}}\) we will prove that, for special \(e \in {\mathcal {S}}\), \({\mathcal {M}}_e^t(G) = \prod _{\Theta \in \theta _e} {\mathcal {M}}^t(\Theta )\) is a finite direct product of component categories \({\mathcal {M}}^t(\Theta )\), now referring to connected components of the center of \({\mathcal {S}}\). A special \(e\in {\mathcal {H}}\) will be also special in \({\mathcal {S}}\), but idempotents \(e\in {\mathcal {H}}\) not being special can become special in \({\mathcal {S}}\). To obtain conditions we consider the sets \(\mathrm{Irr}^t(G) \subset \mathrm{Irr}(G)\) of (tempered) smooth irreducible representations of G, and we view \(\mathrm{Irr}(G)\) as a topological space for the Jacobson topology defined by the algebra \({\mathcal {H}}\). We use this topology to introduce a preorder on the connected components of \(\mathrm{Irr}^t(G)\). Then we prove that, for an idempotent \(e \in {\mathcal {H}}\) which becomes special in \({\mathcal {S}}\), its support \(\theta _e\) must be saturated with respect to that preorder. We further analyze the above decomposition of \({\mathcal {M}}_e^t(G)\) in the case where G is k-split with connected center and where \(e = e_J \in {\mathcal {H}}\) is the Iwahori idempotent. Here we can use work of Kazhdan and Lusztig to relate our preorder on the support \(\theta _{e_J}\) to the reverse of the natural partial order on the unipotent classes in G. We finish by explicitly computing the case \(G=GL_n\), where \(\theta _{e_J}\) identifies with the set of partitions of n. Surprisingly our preorder (which is a partial order now) is strictly coarser than the reverse of the dominance order on partitions.  相似文献   

19.
Let \({\mathcal{R}}\) be a unital commutative ring and \({\mathcal{M}}\) be a 2-torsion free central \({\mathcal{R}}\) -bimodule. In this paper, for \({n \geqq 3}\), we show that every local derivation from M n (\({\mathcal{R}}\)) into M n (\({\mathcal{M}}\)) is a derivation.  相似文献   

20.
The class \({\mathcal{CR}}\) of completely regular semigroups equipped with the unary operation of inversion forms a variety whose lattice of subvarieties is denoted by \({\mathcal{L(CR)}}\). The variety \({\mathcal B}\) of all bands induces two relations \({\mathbf{B}^{\land}}\) and \({\mathbf{B}^{\lor} }\) by meet and join with \({\mathcal B}\). Their classes are intervals with lower ends \({\mathcal V_{B^{\land}}}\) and \({\mathcal V_{B^{\lor}}}\), and upper ends \({\mathcal V^{B^{\land}}}\) and \({\mathcal V^{B^{\lor}}}\). These objects induce four operators on \({\mathcal{L(CR)}}\).The cluster at a variety \({\mathcal V}\) is the set of all varieties obtained from \({\mathcal V}\) by repeated application of these four operators. We identify the cluster at any variety in \({\mathcal{L(CR)}}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号