首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 265 毫秒
1.
The notion of an m-polar fuzzy set is a generalization of a bipolar fuzzy set. We apply the concept of m-polar fuzzy sets to graphs. We introduce certain types of irregular m-polar fuzzy graphs and investigate some of their properties. We describe the concepts of types of irregular m-polar fuzzy graphs with several examples. We also present applications of m-polar fuzzy graphs in decision making and social network as examples.  相似文献   

2.
Given a graph G with n vertices and an Abelian group A of order n, an A-distance antimagic labelling of G is a bijection from V (G) to A such that the vertices of G have pairwise distinct weights, where the weight of a vertex is the sum (under the operation of A) of the labels assigned to its neighbours. An A-distance magic labelling of G is a bijection from V (G) to A such that the weights of all vertices of G are equal to the same element of A. In this paper we study these new labellings under a general setting with a focus on product graphs. We prove among other things several general results on group antimagic or magic labellings for Cartesian, direct and strong products of graphs. As applications we obtain several families of graphs admitting group distance antimagic or magic labellings with respect to elementary Abelian groups, cyclic groups or direct products of such groups.  相似文献   

3.
Given two point to set operators, one of which is maximally monotone, we introduce a new distance in their graphs. This new concept reduces to the classical Bregman distance when both operators are the gradient of a convex function. We study the properties of this new distance and establish its continuity properties. We derive its formula for some particular cases, including the case in which both operators are linear monotone and continuous. We also characterize all bi-functions D for which there exists a convex function h such that D is the Bregman distance induced by h.  相似文献   

4.
We introduce the concept of distance mean-regular graph, which can be seen as a generalization of both vertex-transitive and distance-regular graphs. Let \(\Gamma \) be a graph with vertex set V, diameter D, adjacency matrix \(\varvec{A}\), and adjacency algebra \(\mathcal{A}\). Then, \(\Gamma \) is distance mean-regular when, for a given \(u\in V\), the averages of the intersection numbers \(p_{ij}^h(u,v)=|\Gamma _i(u)\cap \Gamma _j(v)|\) (number of vertices at distance i from u and distance j from v) computed over all vertices v at a given distance \(h\in \{0,1,\ldots ,D\}\) from u, do not depend on u. In this work we study some properties and characterizations of these graphs. For instance, it is shown that a distance mean-regular graph is always distance degree-regular, and we give a condition for the converse to be also true. Some algebraic and spectral properties of distance mean-regular graphs are also investigated. We show that, for distance mean regular-graphs, the role of the distance matrices of distance-regular graphs is played for the so-called distance mean-regular matrices. These matrices are computed from a sequence of orthogonal polynomials evaluated at the adjacency matrix of \(\Gamma \) and, hence, they generate a subalgebra of \(\mathcal{A}\). Some other algebras associated to distance mean-regular graphs are also characterized.  相似文献   

5.
A graph is called distance integral (or D-integral) if all eigenvalues of its distance matrix are integers. In their study of D-integral complete multipartite graphs, Yang and Wang (2015) posed two questions on the existence of such graphs. We resolve these questions and present some further results on D-integral complete multipartite graphs. We give the first known distance integral complete multipartite graphs \({K_{{p_1},{p_2},{p_3}}}\) with p1 < p2 < p3, and \({K_{{p_1},{p_2},{p_3},{p_4}}}\) with p1 < p2 < p3 < p4, as well as the infinite classes of distance integral complete multipartite graphs \({K_{{a_1}{p_1},{a_2}{p_2},...,{a_s}{p_s}}}\) with s = 5, 6.  相似文献   

6.
Let A be an mth order n-dimensional tensor, where m, n are some positive integers and N:= m(n?1). Then A is called a Hankel tensor associated with a vector v ∈ ?N+1 if Aσ = v k for each k = 0, 1,...,N whenever σ = (i1,..., im) satisfies i1 +· · ·+im = m+k. We introduce the elementary Hankel tensors which are some special Hankel tensors, and present all the eigenvalues of the elementary Hankel tensors for k = 0, 1, 2. We also show that a convolution can be expressed as the product of some third-order elementary Hankel tensors, and a Hankel tensor can be decomposed as a convolution of two Vandermonde matrices following the definition of the convolution of tensors. Finally, we use the properties of the convolution to characterize Hankel tensors and (0,1) Hankel tensors.  相似文献   

7.
Edge-colourings of graphs have been studied for decades. We study edge-colourings with respect to hereditary graph properties. For a graph G, a hereditary graph property P and l ? 1 we define \(X{'_{P,l}}\)(G) to be the minimum number of colours needed to properly colour the edges of G, such that any subgraph of G induced by edges coloured by (at most) l colours is in P. We present a necessary and sufficient condition for the existence of \(X{'_{P,l}}\)(G). We focus on edge-colourings of graphs with respect to the hereditary properties Ok and Sk, where Ok contains all graphs whose components have order at most k+1, and Sk contains all graphs of maximum degree at most k. We determine the value of \(X{'_{{S_k},l}}(G)\) for any graph G, k ? 1, l ? 1, and we present a number of results on \(X{'_{{O_k},l}}(G)\).  相似文献   

8.
An antimagic labeling of a graph with q edges is a bijection from the set of edges of the graph to the set of positive integers \({\{1, 2,\dots,q\}}\) such that all vertex weights are pairwise distinct, where a vertex weight is the sum of labels of all edges incident with the vertex. The join graph GH of the graphs G and H is the graph with \({V(G + H) = V(G) \cup V(H)}\) and \({E(G + H) = E(G) \cup E(H) \cup \{uv : u \in V(G) {\rm and} v \in V(H)\}}\). The complete bipartite graph K m,n is an example of join graphs and we give an antimagic labeling for \({K_{m,n}, n \geq 2m + 1}\). In this paper we also provide constructions of antimagic labelings of some complete multipartite graphs.  相似文献   

9.
We propose a construction of full-rank q-ary 1-perfect codes. This is a generalization of the construction of full-rank binary 1-perfect codes by Etzion and Vardy (1994). The properties of the i-components of q-ary Hamming codes are investigated, and the construction of full-rank q-ary 1-perfect codes is based on these properties. The switching construction of 1-perfect codes is generalized to the q-ary case. We propose a generalization of the notion of an i-component of a 1-perfect code and introduce the concept of an (i, σ)-component of a q-ary 1-perfect code. We also present a generalization of the Lindström–Schönheim construction of q-ary 1-perfect codes and provide a lower bound for the number of pairwise distinct q-ary 1-perfect codes of length n.  相似文献   

10.
We consider the distance graph G(n, r, s), whose vertices can be identified with r-element subsets of the set {1, 2,..., n}, two arbitrary vertices being joined by an edge if and only if the cardinality of the intersection of the corresponding subsets is s. For s = 0, such graphs are known as Kneser graphs. These graphs are closely related to the Erd?s–Ko–Rado problem and also play an important role in combinatorial geometry and coding theory. We study some properties of random subgraphs of G(n, r, s) in the Erd?s–Rényi model, in which every edge occurs in the subgraph with some given probability p independently of the other edges. We find the asymptotics of the independence number of a random subgraph of G(n, r, s) for the case of constant r and s. The independence number of a random subgraph is Θ(log2n) times as large as that of the graph G(n, r, s) itself for r ≤ 2s + 1, while for r > 2s + 1 one has asymptotic stability: the two independence numbers asymptotically coincide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号