首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we will study the lower bounds of the life span (the maximal existence time) of solutions to the initial‐boundary value problems with small initial data and zero Neumann boundary data on exterior domain for one‐dimensional general quasilinear wave equations utt?uxx=b(u,Du)uxx+F(u,Du). Our lower bounds of the life span of solutions in the general case and special case are shorter than that of the initial‐Dirichlet boundary value problem for one‐dimensional general quasilinear wave equations. We clarify that although the lower bounds in this paper are same as that in the case of Robin boundary conditions obtained in the earlier paper, however, the results in this paper are not the trivial generalization of that in the case of Robin boundary conditions because the fundamental Lemmas 2.4, 2.5, 2.6, and 2.7, that is, the priori estimates of solutions to initial‐boundary value problems with Neumann boundary conditions, are established differently, and then the specific estimates in this paper are different from that in the case of Robin boundary conditions. Another motivation for the author to write this paper is to show that the well‐posedness of problem 1.1 is the essential precondition of studying the lower bounds of life span of classical solutions to initial‐boundary value problems for general quasilinear wave equations. The lower bound estimates of life span of classical solutions to initial‐boundary value problems is consistent with the actual physical meaning. Finally, we obtain the sharpness on the lower bound of the life span 1.8 in the general case and 1.10 in the special case. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
We propose and analyze an application of a fully discrete C2 spline quadrature Petrov‐Galerkin method for spatial discretization of semi‐linear parabolic initial‐boundary value problems on rectangular domains. We prove second order in time and optimal order H1 norm convergence in space for the extrapolated Crank‐Nicolson quadrature Petrov‐Galerkin scheme. We demonstrate numerically both L2 and H1 norm optimal order convergence of the scheme even if the nonlinear source term is not smooth. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005.  相似文献   

3.
The arguments showing non‐existence of eigensolutions to exterior‐boundary value problems associated with systems—such as the Maxwell and Lamé system—rely on showing that such solutions would have to have compact support and therefore—by a unique continuation property—cannot be non‐trivial. Here we will focus on the first part of the argument. For a class of second order elliptic systems it will be shown that L2‐solutions in exterior domains must have compact support. Both the asymptotically isotropic Maxwell system and the Lamé system with asymptotically decaying perturbations can be reduced to this class of elliptic systems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
We consider symmetric flows of a viscous compressible barotropic fluid with a free boundary, under a general mass force depending both on the Eulerian and Lagrangian co‐ordinates, with arbitrarily large initial data. For a general non‐monotone state function p, we prove uniform‐in‐time energy bound and the uniform bounds for the density ρ, together with the stabilization as t → ∞ of the kinetic and potential energies. We also obtain H1‐stabilization of the velocity v to zero provided that the second viscosity is zero. For either increasing or non‐decreasing p, we study the Lλ‐stabilization of ρ and the stabilization of the free boundary together with the corresponding ω‐limit set in the general case of non‐unique stationary solution possibly with zones of vacuum. In the case of increasing p and stationary densities ρS separated from zero, we establish the uniform‐in‐time H1‐bounds and the uniform stabilization for ρ and v. All these results are stated and mainly proved in the Eulerian co‐ordinates. They are supplemented with the corresponding stabilization results in the Lagrangian co‐ordinates in the case of ρS separated from zero. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The nonlinear elliptic system is investigated on a non‐smooth domain. Mixed boundary value conditions are given. The left‐hand side of the system has p‐structure (e.g., it is the p‐Laplacian and 1 < p < ∞). Global regularity results of u and |∇u|p/2 in fractional order Sobolev spaces are proven.  相似文献   

6.
In this paper we prove unique solvability of the generalized Stokes resolvent equations in an infinite layer Ω0 = ℝn –1 × (–1, 1), n ≥ 2, in Lq ‐Sobolev spaces, 1 < q < ∞, with slip boundary condition of on the “upper boundary” ∂Ω+0 = ℝn –1 × {1} and non‐slip boundary condition on the “lower boundary” ∂Ω0 = ℝn –1 × {–1}. The solution operator to the Stokes system will be expressed with the aid of the solution operators of the Laplace resolvent equation and a Mikhlin multiplier operator acting on the boundary. The present result is the first step to establish an Lq ‐theory for the free boundary value problem studied by Beale [9] and Sylvester [22] in L 2‐spaces. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The size of large minimal blocking sets is bounded by the Bruen–Thas upper bound. The bound is sharp when q is a square. Here the bound is improved if q is a non‐square. On the other hand, we present some constructions of reasonably large minimal blocking sets in planes of non‐prime order. The construction can be regarded as a generalization of Buekenhout's construction of unitals. For example, if q is a cube, then our construction gives minimal blocking sets of size q4/3 + 1 or q4/3 + 2. Density results for the spectrum of minimal blocking sets in Galois planes of non‐prime order is also presented. The most attractive case is when q is a square, where we show that there is a minimal blocking set for any size from the interval . © 2004 Wiley Periodicals, Inc. J Combin Designs 13: 25–41, 2005.  相似文献   

8.
The paper is devoted to the investigation of a parabolic partial differential equation with non‐local and time‐dependent boundary conditions arising from ductal carcinoma in situ model. Approximation solution of the present problem is implemented by the Ritz–Galerkin method, which is a first attempt at tackling parabolic equation with such non‐classical boundary conditions. In the process of dealing with the difficulty caused by integral term in non‐local boundary condition, we use a trick of introducing the transition function G(x,t) to convert non‐local boundary to another non‐classical boundary, which can be handled with the Ritz–Galerkin method. Illustrative examples are included to demonstrate the validity and applicability of the technique in this paper. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
This paper is concerned with existence, uniqueness and behaviour of the solutions of the autonomous third‐order non‐linear differential equation f?+(m+2)f f″?(2m+1)f2=0 on ?+ with the boundary conditions f(0)=?γ, f′(∞)=0 and f″(0)=?1. This problem arises when looking for similarity solutions for boundary layer flows with prescribed heat flux. To study solutions we use some direct approach as well as blowing‐up co‐ordinates to obtain a plane dynamical system. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
This paper studies a simple method—Similar Constructing Method (SCM)—for constructing the exact solutions of the nonhomogeneous mixed boundary value problem for sets of n‐interval composite second‐order ordinary differential equation (ODE) with variable coefficient. Then this paper proves the correctness of the solution obtained by SCM. After that, this paper has done simulation experiment. This section uses the SCM to solve the nonhomogeneous boundary value problem of three‐interval composite Bessel equation. Solutions are presented in graphical form for various parameter values, and the influence of parameters on the solution is analyzed. The example shows that using SCM to solve the class of nonhomogeneous mixed boundary value problems of n‐interval composite second‐order linear ODE is easy, convenient, and effective.  相似文献   

11.
We consider a class of non‐selfadjoint operators generated by the equation and the boundary conditions, which govern small vibrations of an ideal filament with non‐conservative boundary conditions at one end and a heavy load at the other end. The filament has a non‐constant density and is subject to a viscous damping with a non‐constant damping coefficient. The boundary conditions contain two arbitrary complex parameters. In our previous paper (Mathematical Methods in the Applied Sciences 2001; 24 (15) : 1139–1169), we have derived the asymptotic approximations for the eigenvalues and eigenfunctions of the aforementioned non‐selfadjoint operators when the boundary parameters were arbitrary complex numbers except for one specific value of one of the parameters. We call this value the critical value of the boundary parameter. It has been shown (in Mathematical Methods in the Applied Sciences 2001; 24 (15) : 1139–1169) that the entire set of the eigenvalues is located in a strip parallel to the real axis. The latter property is crucial for the proof of the fact that the set of the root vectors of the operator forms a Riesz basis in the state space of the system. In the present paper, we derive the asymptotics of the spectrum exactly in the case of the critical value of the boundary parameter. We show that in this case, the asymptotics of the eigenvalues is totally different, i.e. both the imaginary and real parts of eigenvalues tend to ∞as the number of an eigenvalue increases. We will show in our next paper, that as an indirect consequence of such a behaviour of the eigenvalues, the set of the root vectors of the corresponding operator is not uniformly minimal (let alone the Riesz basis property). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
The purpose of this paper is to study a class of semilinear elliptic boundary value problems with degenerate boundary conditions which include as particular cases the Dirichlet problem and the Robin problem. The approach here is based on the super‐sub‐solution method in the degenerate case, and is distinguished by the extensive use of an Lp Schauder theory elaborated for second‐order, elliptic differential operators with discontinuous zero‐th order term. By using Schauder's fixed point theorem, we prove that the existence of an ordered pair of sub‐ and supersolutions of our problem implies the existence of a solution of the problem. The results extend an earlier theorem due to Kazdan and Warner to the degenerate case. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim  相似文献   

13.
This paper describes well‐posedness, spectral representations, and approximations of solutions of uniformly elliptic, second‐order, divergence form elliptic boundary value problems on exterior regions U in when N ≥ 3. Inhomogeneous Dirichlet, Neumann, and Robin boundary conditions are treated. These problems are first shown to be well‐posed in the space E1(U) of finite‐energy functions on U using variational methods. Spectral representations of these solutions involving Steklov eigenfunctions and solutions subject to zero Dirichlet boundary conditions are described. Some approximation results for the A‐harmonic components are obtained. Positivity and comparison results for these solutions are given. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract. We prove that for bounded open sets Ω with continuous boundary, Sobolev spaces of type W 0 l,p (Ω ) are characterized by the zero extension outside of Ω . Combining this with a compactness result for domains of class C, we obtain a general existence theorem for shape optimization problems governed by nonlinear nonhomogenous Dirichlet boundary value problems of arbitrary order, in arbitrary dimension and with general cost functionals.  相似文献   

15.
We consider the third‐order wide‐angle “parabolic” equation of underwater acoustics in a cylindrically symmetric fluid medium over a bottom of range‐dependent bathymetry. It is known that the initial‐boundary‐value problem for this equation may not be well posed in the case of (smooth) bottom profiles of arbitrary shape, if it is just posed e.g. with a homogeneous Dirichlet bottom boundary condition. In this article, we concentrate on downsloping bottom profiles and propose an additional boundary condition that yields a well‐posed problem, in fact making it L2 ‐conservative in the case of appropriate real parameters. We solve the problem numerically by a Crank–Nicolson‐type finite difference scheme, which is proved to be unconditionally stable and second‐order accurate and simulates accurately realistic underwater acoustic problems. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

16.
We propose and analyze a Crank–Nicolson quadrature Petrov–Galerkin (CNQPG) ‐spline method for solving semi‐linear second‐order hyperbolic initial‐boundary value problems. We prove second‐order convergence in time and optimal order H2 norm convergence in space for the CNQPG scheme that requires only linear algebraic solvers. We demonstrate numerically optimal order Hk, k = 0,1,2, norm convergence of the scheme for some test problems with smooth and nonsmooth nonlinearities. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

17.
We characterize the convergence of the series ∑ λ–1n, where λn are the non‐zero eigenvalues of some boundary value problems for degenerate second order ordinary differential operators and we prove a formula for the above sum when the coefficient of the zero‐order term vanishes. We study these operators both in weighted Hilbert spaces and in spaces of continuous functions. After investigating the boundary behaviour of the eigenfunctions, we give applications to the regularity of the generated semigroups.  相似文献   

18.
   Abstract. We prove that for bounded open sets Ω with continuous boundary, Sobolev spaces of type W 0 l,p (Ω ) are characterized by the zero extension outside of Ω . Combining this with a compactness result for domains of class C, we obtain a general existence theorem for shape optimization problems governed by nonlinear nonhomogenous Dirichlet boundary value problems of arbitrary order, in arbitrary dimension and with general cost functionals.  相似文献   

19.
By means of a direct and constructive method based on the theory of semi‐global C2 solution, the local exact boundary observability and an implicit duality between the exact boundary controllability and the exact boundary observability are shown for 1‐D quasilinear wave equations with various boundary conditions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Interest is directed to linearized free boundary motion of a compressible liquid subject to surface tension and self‐gravitation respectively. Linearization relative to an a‐priori given solution to the non‐linear equations leads to a non‐local second order evolution problem to be posed in a space‐time cylinder with variable cross section subject to Fréchet boundary conditions along the lateral boundary part. Well‐posedness of the corresponding initial value problem in a natural weak formulation is proved. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号