首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The aim of the present paper is to make use of the modern theory of point processes to study optimal solutions for single‐item inventory. Demand for goods is assumed to occur according to a compound Poisson process and production occurs continuously and deterministically between times of demand, such that the inventory evolves according to a Markov process in continuous time. The aim is to propose a way of finding optimal production schemes by minimizing a certain expected loss over some finite period. There are holding/production costs depending on the stock level, and random penalty amounts will occur due to excess demand which is assumed backlogged. For simplicity we will not incorporate fixed costs. We give some numerical illustrations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
In this article, we consider the problem of finding the optimal inventory level for components in an assembly system where multiple products share common components in the presence of random demand. Previously, solution procedures that identify the optimal inventory levels for components in a component commonality problem have been considered for two product or one common component systems. We will here extend this to a three products system considering any number of common components. The inventory problem considered is modeled as a two stage stochastic recourse problem where the first stage is to set the inventory levels to maximize expected profit while the second stage is to allocate components to products after observing demand. Our main contribution, and the main focus of this paper, is the outline of a procedure that finds the gradient for the stochastic problem, such that an optimal solution can be identified and a gradient based search method can be used to find the optimal solution.  相似文献   

3.
In this paper we address the problem of inventory positioning, i.e., the determination of the supply chain node where inventory should be held, to minimize holding costs given a pre-specified order fill rate. A single-echelon inventory system with multiple products models the problem. The value of inventory is assumed to be an increasing function of the amount of processing performed at upstream nodes, while achieved fill-rates are dependent on the distance or time between the inventory storage and customer locations. We propose a novel analytical approach to solve the problem for the case of normally distributed demand that is based on iterative calculations of inventory holding costs at the various potential inventory locations.  相似文献   

4.

In this paper, an inventory problem where the inventory cycle must be an integer multiple of a known basic period is considered. Furthermore, the demand rate in each basic period is a power time-dependent function. Shortages are allowed but, taking necessities or interests of the customers into account, only a fixed proportion of the demand during the stock-out period is satisfied with the arrival of the next replenishment. The costs related to the management of the inventory system are the ordering cost, the purchasing cost, the holding cost, the backordering cost and the lost sale cost. The problem is to determine the best inventory policy that maximizes the profit per unit time, which is the difference between the income obtained from the sales of the product and the sum of the previous costs. The modeling of the inventory problem leads to an integer nonlinear mathematical programming problem. To solve this problem, a new and efficient algorithm to calculate the optimal inventory cycle and the economic order quantity is proposed. Numerical examples are presented to illustrate how the algorithm works to determine the best inventory policies. A sensitivity analysis of the optimal policy with respect to some parameters of the inventory system is developed. Finally, conclusions and suggestions for future research lines are given.

  相似文献   

5.
为解决连锁企业库存不平衡问题,本文研究了考虑多商品多批次取送货的模糊需求车辆路径问题。该问题综合考虑了多货混装、多次访问、供需未匹配、客户需求不唯一以及需求不确定等因素。本文以运营成本最小为目标,构建MCVRPSPDFD数学模型,模型利用可信测度理论应对决策环境中的不确定因素,通过改进的禁忌搜索算法进行求解。为适应模型需求和提升运算效率,算法设计了合理的初始种群形成过程及编码解码方式,并通过参数测试选取合适的参数。算例结果显示,本文成果能有效解决连锁企业库存不平衡问题,决策者偏好值的变动会对运营成本产生影响。  相似文献   

6.
Common characteristics of inventory systems include uncertain demand and restrictions such as budgetary and storage space constraints. Several authors have examined budget constrained multi-item stochastic inventory systems controlled by continuous review policies without considering marginal review shortage costs. Existing models assume that purchasing costs are paid at the time an order is placed, which is not always the case since in some systems purchasing costs are paid when order arrive. In the latter case the maximum investment in inventory is random since the inventory level when an order arrives is a random variable. Hence payment of purchasing costs on delivery yields a stochastic budget constraint for inventory. In this paper with mixture of back orders and lost sales, we assume that mean and variance of lead time demand are known but their probability distributions are unknown. After that, we apply the minimax distribution free procedure to find the minimum expected value of the random objective function with budget constraint. The random budget constraint is transformed to crisp budget constraint by chance-constraint technique. Finally, the model is illustrated by a numerical example.  相似文献   

7.
In business and industry it becomes very difficult for a manager to take concrete decision regarding inventory, as the data available to him are not always certain. Because uncertainty arises in demand, set-up resources & capacity constraints of an inventory planning system, it could be more justified to consider these factors in an elastic form. Therefore, with these uncertain data, fuzziness can be applied and the problem of inventory can be controlled. In the present paper, an inventory model without shortage has been considered in a fuzzy environment, by considering real-life data from the LPG store of Banasthali University. Triangular fuzzy numbers have been used to consider the ordering and holding costs. For defuzzification, signed-distance method has been used to compute the optimum order quantity.  相似文献   

8.
We study a variant of the stochastic economic lot scheduling problem (SELSP) encountered in process industries, in which a single production facility must produce several different grades of a family of products to meet random stationary demand for each grade from a common finished-goods (FG) inventory buffer that has limited storage capacity. When the facility is set up to produce a particular grade, the only allowable changeovers are from that grade to the next lower or higher grade. Raw material is always available, and the production facility produces continuously at a constant rate even during changeover transitions. All changeover times are constant and equal to each other, and demand that cannot be satisfied directly from inventory is lost. There is a changeover cost per changeover occasion, a spill-over cost per unit of product in excess whenever there is not enough space in the FG buffer to store the produced grade, and a lost-sales cost per unit short whenever there is not enough FG inventory to satisfy the demand. We model the SELSP as a discrete-time Markov decision process (MDP), where in each time period the decision is whether to initiate a changeover to a neighboring grade or keep the set up of the production facility unchanged, based on the current state of the system, which is defined by the current set up of the facility and the FG inventory levels of all the grades. The goal is to minimize the (long-run) expected average cost per period. For problems with more than three grades, we develop a heuristic solution procedure which is based on decomposing the original multi-grade problem into several 3-grade MDP sub-problems, numerically solving each sub-problem using value iteration, and constructing the final policy for the original problem by combining parts of the optimal policies of the sub-problems. We present numerical results for problem examples with 2–5 grades. For the 2- and 3-grade examples, we numerically solve the exact MDP problem using value iteration to obtain insights into the structure of the optimal changeover policy. For the 4- and 5-grade examples, we compare the performance of the decomposition-based heuristic (DBH) solution procedure against that obtained by numerically solving the exact problem. We also compare the performance of the DBH method against the performance of three simpler parameterized heuristics. Finally, we compare the performance of the DBH and the exact solution procedures for the case where the FG inventory storage consists of a number of separate general-purpose silos capable of storing any grade as long as it is not mixed with any other grade.  相似文献   

9.
In this paper, we study the inventory system of an online retailer with compound Poisson demand. The retailer normally replenishes its inventory according to a continuous review (nQR) policy with a constant lead time. Usually demands that cannot be satisfied immediately are backordered. We also assume that the customers will accept a reasonable waiting time after they have placed their orders because of the purchasing convenience of the online system. This means that a sufficiently short waiting time incurs no shortage costs. We call this allowed waiting time “committed service time”. After this committed service time, if the retailer is still in shortage, the customer demand must either be satisfied with an emergency supply that takes no time (which is financially equivalent to a lost sale) or continue to be backordered with a time-dependent backorder cost. The committed service time gives an online retailer a buffer period to handle excess demands. Based on real-time information concerning the outstanding orders of an online retailer and the waiting times of its customers, we provide a decision rule for emergency orders that minimizes the expected costs under the assumption that no further emergency orders will occur. This decision rule is then used repeatedly as a heuristic. Numerical examples are presented to illustrate the model, together with a discussion of the conditions under which the real-time decision rule provides considerable cost savings compared to traditional systems.  相似文献   

10.
In this paper we study a single-item lot-sizing model in which production capacity can be adjusted from time to time. There are a number of different production capacity levels available to be acquired in each period, where each capacity level is assumed to be a multiple of a base capacity unit. To reduce the waste of excess of capacity but guarantee meeting the demand, it is important to decide which level of capacity should be acquired and how many units of the item should be produced for every period in the planning horizon. Capacity adjustment cost incurs when capacity acquired in the current period differs from the one acquired in the previous period. Capacity acquisition costs, capacity adjustment costs, and production costs in each period are all time-varying and depend on the capacity level acquired in that period. Backlogging is allowed. Both production costs and inventory costs are assumed to be general concave. We provide optimal properties and develop an efficient exact algorithm for the general model. For the special cases with zero capacity adjustment costs or fixed-plus-linear production costs, we present a faster exact algorithm. Computational experiments show that our algorithm is able to solve medium-size instances for the general model in a few seconds, and that cost can be reduced significantly through flexible capacity adjustment.  相似文献   

11.
In this paper, we consider a single product, periodic review, stochastic demand inventory problem where backorders are allowed and penalized via fixed and proportional backorder costs simultaneously. Fixed backorder cost associates a one-shot penalty with stockout situations whereas proportional backorder cost corresponds to a penalty for each demanded but yet waiting to be satisfied item. We discuss the optimality of a myopic base-stock policy for the infinite horizon case. Critical number of the infinite horizon myopic policy, i.e., the base-stock level, is denoted by S. If the initial inventory is below S then the optimal policy is myopic in general, i.e., regardless of the values of model parameters and demand density. Otherwise, the sufficient condition for a myopic optimum requires some restrictions on demand density or parameter values. However, this sufficient condition is not very restrictive, in the sense that it holds immediately for Erlang demand density family. We also show that the value of S can be computed easily for the case of Erlang demand. This special case is important since most real-life demand densities with coefficient of variation not exceeding unity can well be represented by an Erlang density. Thus, the myopic policy may be considered as an approximate solution, if the exact policy is intractable. Finally, we comment on a generalization of this study for the case of phase-type demands, and identify some related research problems which utilize the results presented here.  相似文献   

12.
In this study, we develop and analyse an optimal solution procedure for the inventory lot-sizing problem with a general class of time-varying demand functions. The objective of the procedure is to determine the optimal replenishment schedule over a finite planning horizon during which shortages are allowed and are completely backordered. We show that the procedure yields a unique optimal replenishment schedule for both increasing and decreasing demand patterns. We also discuss two particular cases of linear and non-linear demand trend models, and we illustrate the optimal solution procedure with four numerical examples.  相似文献   

13.
In classic inventory models it is common to assume that excess demand is backordered. However, studies analyzing customer behavior in practice show that most unfulfilled demand is lost or an alternative item/location is looked for in many retail environments. Inventory systems that include this lost-sales characteristic appear to be more difficult to analyze and to solve. Furthermore, lost-sales inventory systems require different replenishment policies to minimize costs compared to backorder systems. In this paper, we classify the models in the literature based on the characteristics of the inventory system and review the proposed replenishment policies. For each classification and type of replenishment policy we discuss the available models and their performance. Furthermore, directions for future research are proposed.  相似文献   

14.
In this paper, we consider the production–inventory problem in which the demand, production and deterioration rates of a product are assumed to vary with time. Shortages of a cycle are allowed to be backlogged partially. Two models are developed for the problem by employing different modeling approaches over an infinite planning horizon. Solution procedures are derived for determining the optimal replenishment policies. A procedure to find the near-optimal operating policy of the problem over a finite time horizon is also suggested.  相似文献   

15.
In this paper we consider a single item, stochastic demand production/inventory problem where the maximum amount that can be produced (or ordered) in any given period is assumed to be uncertain. Inventory levels are reviewed periodically. The system operates under a stationary modified base stock policy. The intent of our paper is to present a procedure for computing the optimal base stocl level of this policy under expected average cost per period criterion. This procedure would provide guidance as to the appropriate amount of capacity to store in the form of inventory in the face of stochastic demand and uncertain capacity. In achieving this goal, our main contribution is to establish the analogy between the class of base stock production/inventory policies that operate under demand/capacity uncertainty, and the G/G/1 queues and their associated random walks. We also present example derivations for some important capacity distributions.  相似文献   

16.
In this paper, we present an optimal procedure for finding the replenishment schedule for the inventory system in which items deteriorate over time and demand rates are increasing over a known and finite planning horizon.  相似文献   

17.
This paper is concerned with finding the optimal replenishment policy for an inventory model that minimizes the total expected discounted costs over an infinite planning horizon. The demand is assumed to be driven by a Brownian motion with drift and the holding costs (inventory and shortages) are assumed to take some general form. This generalizes the earlier work where holding costs were assumed linear. It turns out that problem of finding the optimal replenishment schedule reduces to the problem of solving a Quasi-Variational Inequality Problem (QVI). This QVI is then shown to lead to an (sS) policy, where s and S are determined uniquely as a solution of some algebraic equations.  相似文献   

18.
传统的库存控制模型都视需求率为固定不变的,放松了这个假定,通过考虑库存费为存储时间的阶梯函数的情形:(1)全单位库存费用,(2)增量库存费用,并且在需求率依赖于库存水平,当库存水平下降到一定程度时,需求率变为常数的形式下,把变化的订购费引入,发展了两个离散性库存费的变质物品的库存控制模型。在模型中允许周期末库存水平不为零,并且提出了最优解的算法。  相似文献   

19.
Vendor Managed Inventory (VMI) contracts are anchored on a fill rate at which the vendor is expected to meet the end-customer demand. Violations of this contracted fill rate due to excess and insufficient inventory are both penalized, often in a linear, but asymmetric manner. To minimize these costs, the vendor needs to maintain an operational fill rate that is different from the contracted fill rate. We model, analyze and solve an optimization problem that determines this operational fill rate and the associated optimal inventory decision. We establish that, for some special, yet popular, models of demand (e.g. truncated normal, gamma, Weibull and uniform distributions), the optimal solution can be derived in closed form and computed precisely. For other demand distributions, either the optimization problem becomes ill-defined or we may need to use approximate solution methods. An extensive computational study reveals that, for realistic values of problem parameters, the operational fill rate is often larger (by as much as 20%) than the contracted service level, possibly explaining the inventory glut commonly observed in real-world VMI systems.  相似文献   

20.
An inventory model with unidirectional lateral transshipments   总被引:3,自引:0,他引:3  
This paper deals with a continuous review inventory system with Poisson demand, in which lateral transshipments are allowed. In case of a shortage at a location, another location acts as a supplier, if it is possible. A common assumption in earlier papers is that transshipments are allowed between all locations. This network configuration may, however, not be the best choice for many reasons. One such reason is that it may be difficult to establish contracts between locations regarding the design of the transshipment policy. Another reason is that a system with many transshipment links is much more complex than a system with few transshipment links. In this paper, we study a system where transshipments are allowed only in one direction. This may be a reasonable policy if the locations have very different backorder/lost sales costs. Our approach is relatively simple and fast, and works well in most cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号