首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a small perturbation result for nonlocal elliptic equations, which says that for a class of nonlocal operators, the solutions are in Cσ+α for any α∈(0,1) as long as the solutions are small. This is a nonlocal generalization of a celebrated result of Savin in the case of second order equations.  相似文献   

2.
Numerical Solution of the Bagley-Torvik Equation   总被引:3,自引:0,他引:3  
We consider the numerical solution of the Bagley-Torvik equation Ay(t) + BD * 3/2 y(t) + Cy(t) = f(t), as a prototype fractional differential equation with two derivatives. Approximate solutions have recently been proposed in the book and papers of Podlubny in which the solution obtained with approximate methods is compared to the exact solution. In this paper we consider the reformulation of the Bagley-Torvik equation as a system of fractional differential equations of order 1/2. This allows us to propose numerical methods for its solution which are consistent and stable and have arbitrarily high order. In this context we specifically look at fractional linear multistep methods and a predictor-corrector method of Adams type.  相似文献   

3.
This paper is concerned with the development of efficient algorithms for the approximate solution of fractional differential equations of the form D y(t)=f(t,y(t)), R +N.()We briefly review standard numerical techniques for the solution of () and we consider how the computational cost may be reduced by taking into account the structure of the calculations to be undertaken. We analyse the fixed memory principle and present an alternative nested mesh variant that gives a good approximation to the true solution at reasonable computational cost. We conclude with some numerical examples.  相似文献   

4.
In this article, we prove the existence of solutions to singular coagulation equations with multifragmentation. We use weighted L1 spaces to deal with the singularities and to obtain regular solutions. The Smoluchowski kernel is covered by our proof. The weak L1 compactness methods are applied to suitably chosen approximating equations as a base of our proof. A more restrictive uniqueness result is also given. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
We present a uniqueness theorem for time-periodic solutions to the Navier–Stokes equations in unbounded domains. Thus far, results on the uniqueness of time-periodic solutions to the Navier–Stokes equations in unbounded domain, roughly speaking, have only found that a small time-periodic L n -solution is unique within the class of solutions which have sufficiently small L (L n )-norm. In this paper, we show that a small time-periodic L n -solution is unique within the class of all time-periodic L n -solutions, which contains large solutions. We also consider the uniqueness of solutions in weak-L n space. The proof of the present uniqueness theorem is based on the method of dual equations.   相似文献   

6.
A computationally stable method for the general solution of a system of linear equations is given. The system isA Tx–B=0, where then-vectorx is unknown and then×q matrixA and theq-vectorB are known. It is assumed that the matrixA T and the augmented matrix [A T,B] are of the same rankm, wheremn, so that the system is consistent and solvable. Whenm<n, the method yields the minimum modulus solutionx m and a symmetricn ×n matrixH m of ranknm, so thatx=x m+H my satisfies the system for ally, ann-vector. Whenm=n, the matrixH m reduces to zero andx m becomes the unique solution of the system.The method is also suitable for the solution of a determined system ofn linear equations. When then×n coefficient matrix is ill-conditioned, the method can produce a good solution, while the commonly used elimination method fails.This research was supported by the National Science Foundation, Grant No. GP-41158.  相似文献   

7.
This paper utilizes the Picard method and Newton's method to linearize the stationary incompressible Navier–Stokes equations and then uses an LL* approach, which is a least-squares finite element method applied to the dual problem of the corresponding linear system. The LL* approach provides an L2-approximation to a given problem, which is not typically available with conventional finite element methods for nonlinear second-order partial differential equations. We first show that the proposed combination of linearization scheme and LL* approach provides an L2-approximation to the stationary incompressible Navier–Stokes equations. The validity of L2-approximation is proven through the analysis of the weak problem corresponding to the linearized Navier–Stokes equations. Then, the convergence is analyzed, and numerical results are presented.  相似文献   

8.
It is shown that every full eA decomposable probability measure on Rk, where A is a linear operator all of whose eigenvalues have negative real part, is either absolutely continuous with respect to Lebesgue measure or continuous singular with respect to Lebesgue measure. This result is used to characterize the continuity properties of random variables that are limits of solutions of certain stochastic difference equations.  相似文献   

9.
In this article, we study the dissipativity of the linearly implicit Euler scheme for the 2D Navier‐Stokes equations with time delay volume forces (NSD). This scheme can be viewed as an application of the implicit Euler scheme to linearized NSD. Therefore, only a linear system is needed to solve at each time step. The main results we obtain are that this scheme is L2 dissipative for any time step size and H1 dissipative under a time‐step constraint. As a consequence, the existence of a numerical attractor of the discrete dynamical system is established. A by‐product of the dissipativity analysis of the linearly implicit Euler scheme for NSD is that the dissipativity of an implicit‐explicit scheme for the celebrated Navier‐Stokes equations that treats the volume forces term explicitly is obtained.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 2114–2140, 2017  相似文献   

10.
Summary. We consider a reaction-diffusion equation that is homogeneous of degree one. This homogeneity is a symmetry. The dynamics is factorized into trivial evolution due to symmetry and nontrivial behavior by a projection to an appropriate hypermanifold. The resulting evolution equations are rather complex. We examine the bifurcation behavior of a stationary point of the projected system. For these purposes we develop techniques for dimension reduction similar to the Ginzburg-Landau (GL) approximation, the modulation equations. Since we are not in the classical GL situation, the remaining approximative equations have a quadratic nonlinearity and the amplitude does not scale with ε but with ε 2 where ε 2 denotes the bifurcation parameter. Moreover, the symmetry requires that not only one but two equations are necessary to describe the behavior of the system. We investigate traveling fronts for the modulation equations. This result is used to analyze an epidemic model. Received April 9, 1996; second revision received January 3, 1997; final revision received October 7, 1997; accepted January 19, 1998  相似文献   

11.
In this paper we prove nonexistence of stationary weak solutions to the Euler–Poisson equations and the Navier–Stokes–Poisson equations in ? N , N ≥ 2, under suitable assumptions of integrability for the density, velocity and the potential of the force field. For the time dependent Euler–Poisson equations we prove nonexistence result assuming additionally temporal asymptotic behavior near infinity of the second moment of density. For a class of time dependent Navier–Stokes–Poisson equations in ? N this asymptotic behavior of the density can be proved if we assume the standard energy inequality, and therefore the nonexistence of global weak solution follows from more plausible assumption in this case.  相似文献   

12.
The author reviews briefly some of the recent results on the blow-up problem for the incompressible Euler equations on R^N and also presents Liouville type theorems for the incompressible and compressible fluid equations.  相似文献   

13.
In a recent paper [Odibat Z, Momani S, Erturk VS. Generalized differential transform method: application to differential equations of fractional order, Appl Math Comput. submitted for publication] the authors presented a new generalization of the differential transform method that would extended the application of the method to differential equations of fractional order. In this paper, an application of the new technique is applied to solve fractional differential equations of the form y(μ)(t)=f(t,y(t),y(β1)(t),y(β2)(t),…,y(βn)(t)) with μ>βn>βn-1>…>β1>0, combined with suitable initial conditions. The fractional derivatives are understood in the Caputo sense. The method provides the solution in the form of a rapidly convergent series. Numerical examples are used to illustrate the preciseness and effectiveness of the new generalization.  相似文献   

14.
In this paper, we study the energy equality and the uniqueness of weak solutions to the MHD equations in the critical space L∞(0, T; L^n(Ω). We prove that if the velocity u belongs to the critical space L∞(0, T; L^n(Ω), the energy equality holds. On the basis of the energy equality, we further prove that the weak solution to the MHD equations is unique.  相似文献   

15.
1.IntroductionTherehavebeenconsiderableliteratuxeonthedecayofsolutionstothebestialvalueproblemsforsomenonlinearevolutionequations[3,4,6,7,161.Undercertainassumptions,LZdecayandLoodecayofsolutionstotheseproblemswereestablished.Thereadersinterestedcanfindsuchworksinourreferences.OurillterestisfocusedonthedecayofsolutionsoftheinitialvalueproblemsfornonlinearBenjamin--OnthBurgers(BOB)l"'19--21]andSchlodinger-Burgers(SB)equationwhereHisHilberttransform,definedbyWewallttoshowthattheLZandLoon…  相似文献   

16.
In this paper,upper bounds of the L2-decay rate for the Boussinesq equations are considered.Using the L2 decay rate of solutions for the heat equation,and assuming that the solutions of the Boussinesq equations are smooth,we obtain the upper bounds of L2 decay rate for the smooth solutions and difference between the solutions of the Boussinesq equations and those of the heat system with the same initial data.The decay results may then be obtained by passing to the limit of approximating sequences of solutions.The main tool is the Fourier splitting method.  相似文献   

17.
We prove, on one hand, that for a convenient body force with values in the distribution space (H -1(D)) d , where D is the geometric domain of the fluid, there exist a velocity u and a pressure p solution of the stochastic Navier–Stokes equation in dimension 2, 3 or 4. On the other hand, we prove that, for a body force with values in the dual space V of the divergence free subspace V of (H 1 0(D)) d , in general it is not possible to solve the stochastic Navier–Stokes equations. More precisely, although such body forces have been considered, there is no topological space in which Navier–Stokes equations could be meaningful for them.  相似文献   

18.
This article applies the first‐order system least‐squares (fosls) finite element method developed by Cai, Manteuffel and McCormick to the compressible Stokes equations. By introducing a new dependent velocity flux variable, we recast the compressible Stokes equations as a first‐order system. Then it is shown that the ellipticity and continuity hold for the least‐squares functionals employing the mixture of H?1 and L2, so that the fosls finite element methods yield best approximations for the velocity flux and velocity. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17:689–699, 2001  相似文献   

19.
Let Q be a m × m real matrix and f j  : ? → ?, j = 1, …, m, be some given functions. If x and f(x) are column vectors whose j-coordinates are x j and f j (x j ), respectively, then we apply the finite dimensional version of the mountain pass theorem to provide conditions for the existence of solutions of the semilinear system Qx = f(x) for Q symmetric and positive semi-definite. The arguments we use are a simple adaptation of the ones used by Neuberger. An application of the above concerns partial difference equations on a finite, connected simple graph. A derivation of a graph 𝒢 is just any linear operator D:C 0(𝒢) → C 0(𝒢), where C 0(𝒢) is the real vector space of real maps defined on the vertex set V of the graph. Given a derivation D and a function F:V × ? → ?, one has associated a partial difference equation  = F(v,μ), and one searches for solutions μ ∈ C 0(𝒢). Sufficient conditions in order to have non-trivial solutions of partial difference equations on any finite, connected simple graph for D symmetric and positive semi-definite derivation are provided. A metric (or weighted) graph is a pair (𝒢, d), where 𝒢 is a connected finite degree simple graph and d is a positive function on the set of edges of the graph. The metric d permits to consider some classical derivations, such as the Laplacian operator ?2. In (Neuberger, Elliptic partial difference equations on graphs, Experiment. Math. 15 (2006), pp. 91–107) was considered the nonlinear elliptic partial difference equations ?2 u = F(u), for the metric d = 1.  相似文献   

20.
In this paper we study the case of equalities in some comparison results for L 1-norm or L -norm of the solutions of Dirichlet elliptic problem or Hamilton-Jacobi equations. We show that equalities are achieved only in spherically symmetric situations.Work partially supported by MURST (40%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号