首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Let $E_{/_\mathbb{Q }}$ be an elliptic curve of conductor $Np$ with $p\not \mid N$ and let $f$ be its associated newform of weight $2$ . Denote by $f_\infty $ the $p$ -adic Hida family passing though $f$ , and by $F_\infty $ its $\varLambda $ -adic Saito–Kurokawa lift. The $p$ -adic family $F_\infty $ of Siegel modular forms admits a formal Fourier expansion, from which we can define a family of normalized Fourier coefficients $\{\widetilde{A}_T(k)\}_T$ indexed by positive definite symmetric half-integral matrices $T$ of size $2\times 2$ . We relate explicitly certain global points on $E$ (coming from the theory of Darmon points) with the values of these Fourier coefficients and of their $p$ -adic derivatives, evaluated at weight $k=2$ .  相似文献   

2.
Recently, Bruinier and Ono proved that the coefficients of certain weight \(-1/2\) harmonic weak Maaß forms are given as “traces” of singular moduli for harmonic weak Maaß forms. Here, we prove that similar results hold for the coefficients of harmonic weak Maaß forms of weight \(3/2+k\) , \(k\) even, and weight \(1/2-k\) , \(k\) odd, by extending the theta lift of Bruinier–Funke and Bruinier–Ono. Moreover, we generalize these results to include twisted traces of singular moduli using earlier work of the author and Ehlen on the twisted Bruinier–Funke-lift. Employing a general duality result between weight \(k\) and \(2-k\) , we obtain formulas for all half-integral weights. We also show that the non-holomorphic part of the theta lift in weight \(1/2-k\) , \(k\) odd, is connected to the vanishing of the special value of the \(L\) -function of a certain derivative of the lifted function.  相似文献   

3.
We characterize all Siegel cusp forms of degree $n$ and large weight $k$ by the growth of their Fourier coefficients. More precisely we prove, among other related results, that if the Fourier coefficients of a modular form on the congruence subgroup $\Gamma _0^n(N)$ of square–free level $N$ satisfy the “Hecke bound” at the cusp $\infty $ , then it must be a cusp form, provided $k >2n+1$ .  相似文献   

4.
Let $L$ be a closed orientable Lagrangian submanifold of a closed symplectic six-manifold $(X , \omega )$ . We assume that the first homology group $H_1 (L ; A)$ with coefficients in a commutative ring $A$ injects into the group $H_1 (X ; A)$ and that $X$ contains no Maslov zero pseudo-holomorphic disc with boundary on $L$ . Then, we prove that for every generic choice of a tame almost-complex structure $J$ on $X$ , every relative homology class $d \in H_2 (X , L ; \mathbb{Z })$ and adequate number of incidence conditions in $L$ or $X$ , the weighted number of $J$ -holomorphic discs with boundary on $L$ , homologous to $d$ , and either irreducible or reducible disconnected, which satisfy the conditions, does not depend on the generic choice of $J$ , provided that at least one incidence condition lies in $L$ . These numbers thus define open Gromov–Witten invariants in dimension six, taking values in the ring $A$ .  相似文献   

5.
Let $D$ be an integral domain with quotient field $K$ . In this paper we study the algebra of polynomials in $K[x]$ which map the set of lower triangular $n\times n$ matrices with coefficients in $D$ into itself and show that it coincides with the algebra of polynomials whose divided differences of order $k$ map $D^{k+1}$ into $D$ for every $k< n$ . Using this result we describe the polynomial closure of this set of matrices when $D$ is the ring of integers in a global field.  相似文献   

6.
Let \(p\) be a prime and let \(A\) be a nonempty subset of the cyclic group \(C_p\) . For a field \({\mathbb F}\) and an element \(f\) in the group algebra \({\mathbb F}[C_p]\) let \(T_f\) be the endomorphism of \({\mathbb F}[C_p]\) given by \(T_f(g)=fg\) . The uncertainty number \(u_{{\mathbb F}}(A)\) is the minimal rank of \(T_f\) over all nonzero \(f \in {\mathbb F}[C_p]\) such that \(\mathrm{supp}(f) \subset A\) . The following topological characterization of uncertainty numbers is established. For \(1 \le k \le p\) define the sum complex \(X_{A,k}\) as the \((k-1)\) -dimensional complex on the vertex set \(C_p\) with a full \((k-2)\) -skeleton whose \((k-1)\) -faces are all \(\sigma \subset C_p\) such that \(|\sigma |=k\) and \(\prod _{x \in \sigma }x \in A\) . It is shown that if \({\mathbb F}\) is algebraically closed then $$\begin{aligned} u_{{\mathbb F}}(A)=p-\max \{k :\tilde{H}_{k-1}(X_{A,k};{\mathbb F}) \ne 0\}. \end{aligned}$$ The main ingredient in the proof is the determination of the homology groups of \(X_{A,k}\) with field coefficients. In particular it is shown that if \(|A| \le k\) then \(\tilde{H}_{k-1}(X_{A,k};{\mathbb F}_p)\!=\!0.\)   相似文献   

7.
For a connected graph $G=(V,E)$ and a positive integral vertex weight function $w$ , a max-min weight balanced connected $k$ -partition of $G$ , denoted as $BCP_k$ , is a partition of $V$ into $k$ disjoint vertex subsets $(V_1,V_2,\ldots ,V_k)$ such that each $G[V_i]$ (the subgraph of $G$ induced by $V_i$ ) is connected, and $\min _{1\le i\le k}\{w(V_i)\}$ is maximum. Such a problem has a lot of applications in image processing and clustering, and was proved to be NP-hard. In this paper, we study $BCP_k$ on a special class of graphs: trapezoid graphs whose maximum degree is bounded by a constant. A pseudo-polynomial time algorithm is given, based on which an FPTAS is obtained for $k=2,3,4$ . A step-stone for the analysis of the FPTAS depends on a lower bound for the optimal value of $BCP_k$ in terms of the total weight of the graph. In providing such a lower bound, a byproduct of this paper is that any 4-connected trapezoid graph on at least seven vertices has a 4-contractible edge, which may have a value in its own right.  相似文献   

8.
Let \(\mathfrak {g}\) be a symmetrizable Kac-Moody Lie algebra with the standard Cartan subalgebra \(\mathfrak {h}\) and the Weyl group \(W\) . Let \(P_+\) be the set of dominant integral weights. For \(\lambda \in P_+\) , let \(L(\lambda )\) be the integrable, highest weight (irreducible) representation of \(\mathfrak {g}\) with highest weight \(\lambda \) . For a positive integer \(s\) , define the saturated tensor semigroup as $$\begin{aligned} \Gamma _s:= \{(\lambda _1, \dots , \lambda _s,\mu )\in P_+^{s+1}: \exists \, N\ge 1 \,\text {with}\,L(N\mu )\subset L(N\lambda _1)\otimes \dots \otimes L(N\lambda _s)\}. \end{aligned}$$ The aim of this paper is to begin a systematic study of \(\Gamma _s\) in the infinite dimensional symmetrizable Kac-Moody case. In this paper, we produce a set of necessary inequalities satisfied by \(\Gamma _s\) . These inequalities are indexed by products in \(H^*(G^{\mathrm{min }}/B; \mathbb {Z})\) for \(B\) the standard Borel subgroup, where \(G^{\mathrm{min }}\) is the ‘minimal’ Kac-Moody group with Lie algebra \(\mathfrak {g}\) . The proof relies on the Kac-Moody analogue of the Borel-Weil theorem and Geometric Invariant Theory (specifically the Hilbert-Mumford index). In the case that \(\mathfrak {g}\) is affine of rank 2, we show that these inequalities are necessary and sufficient. We further prove that any integer \(d>0\) is a saturation factor for \(A^{(1)}_1\) and 4 is a saturation factor for \(A^{(2)}_2\) .  相似文献   

9.
Denote by \(s_0^{(r)}\) the least integer such that if \(s \geqslant s_0^{(r)}\) , and \(F\) is a cubic form with real coefficients in \(s\) variables that splits into \(r\) parts, then \(F\) takes arbitrarily small values at nonzero integral points. We bound \(s_0^{(r)}\) for \(r \leqslant 6\) .  相似文献   

10.
We consider, for each exchange matrix $B$ , a category of geometric cluster algebras over $B$ and coefficient specializations between the cluster algebras. The category also depends on an underlying ring $R$ , usually $\mathbb {Z},\,\mathbb {Q}$ , or $\mathbb {R}$ . We broaden the definition of geometric cluster algebras slightly over the usual definition and adjust the definition of coefficient specializations accordingly. If the broader category admits a universal object, the universal object is called the cluster algebra over $B$ with universal geometric coefficients, or the universal geometric cluster algebra over $B$ . Constructing universal geometric coefficients is equivalent to finding an $R$ -basis for $B$ (a “mutation-linear” analog of the usual linear-algebraic notion of a basis). Polyhedral geometry plays a key role, through the mutation fan ${\mathcal {F}}_B$ , which we suspect to be an important object beyond its role in constructing universal geometric coefficients. We make the connection between ${\mathcal {F}}_B$ and $\mathbf{g}$ -vectors. We construct universal geometric coefficients in rank $2$ and in finite type and discuss the construction in affine type.  相似文献   

11.
Let $F$ be a global function field over a finite constant field and $\infty $ a place of $F$ . The ring $A$ of functions regular away from $\infty $ in $F$ is a Dedekind domain. For such $A$ Goss defined a $\zeta $ -function which is a continuous function from $\mathbb{Z }_p$ to the ring of entire power series with coefficients in the completion $F_\infty $ of $F$ at $\infty $ . He asks what one can say about the distribution of the zeros of the entire function at any parameter of $\mathbb{Z }_p$ . In the simplest case $A$ is the polynomial ring in one variable over a finite field. Here the question was settled completely by J. Sheats, after previous work by J. Diaz-Vargas, B. Poonen and D. Wan: for any parameter in $\mathbb{Z }_p$ the zeros of the power series have pairwise different valuations and they lie in  $F_\infty $ . In the present article we completely determine the distribution of zeros for the simplest case different from polynomial rings, namely $A=\mathbb{F }\,\!{}_2[x,y]/(y^2+y+x^3+x+1)$ —this $A$ has class number $1$ , it is the affine coordinate ring of a supersingular elliptic curve and the place $\infty $ is $\mathbb{F }\,\!{}_2$ -rational. The answer is slightly different from the above case of polynomial rings. For arbitrary $A$ such that $\infty $ is a rational place of $F$ , we describe a pattern in the distribution of zeros which we observed in some computational experiments. Finally, we present some precise conjectures on the fields of rationality of these zeroes for one particular hyperelliptic $A$ of genus  $2$ .  相似文献   

12.
We present new proofs and generalizations of unimodality of the \(q\) -binomial coefficients  \(\left( {\begin{array}{c}n\\ k\end{array}}\right) _q\) as polynomials in  \(q\) . We use an algebraic approach by interpreting the differences between numbers of certain partitions as Kronecker coefficients of representations of  \(S_n\) . Other applications of this approach include strict unimodality of the diagonal \(q\) -binomial coefficients and unimodality of certain partition statistics.  相似文献   

13.
Let \(A\) and \(B\) be two points of \(\mathrm{{PG}}(2,q^n)\) , and let \(\Phi \) be a collineation between the pencils of lines with vertices \(A\) and \(B\) . In this paper, we prove that the set of points of intersection of corresponding lines under \(\Phi \) is either the union of a scattered \(\mathrm{{GF}}(q)\) -linear set of rank \(n+1\) with the line \(AB\) or the union of \(q-1\) scattered \(\mathrm{{GF}}(q)\) -linear sets of rank \(n\) with \(A\) and \(B\) . We also determine the intersection configurations of two scattered \(\mathrm{{GF}}(q)\) -linear sets of rank \(n+1\) of \(\mathrm{{PG}}(2,q^n)\) both meeting the line \(AB\) in a \(\mathrm{{GF}}(q)\) -linear set of pseudoregulus type with transversal points \(A\) and \(B\) .  相似文献   

14.
For a group $G$ , denote by $\omega (G)$ the number of conjugacy classes of normalizers of subgroups of $G$ . Clearly, $\omega (G)=1$ if and only if $G$ is a Dedekind group. Hence if $G$ is a 2-group, then $G$ is nilpotent of class $\le 2$ and if $G$ is a $p$ -group, $p>2$ , then $G$ is abelian. We prove a generalization of this. Let $G$ be a finite $p$ -group with $\omega (G)\le p+1$ . If $p=2$ , then $G$ is of class $\le 3$ ; if $p>2$ , then $G$ is of class $\le 2$ .  相似文献   

15.
Let $\alpha $ and $\beta $ be real numbers such that $1$ , $\alpha $ and $\beta $ are linearly independent over $\mathbb {Q}$ . A classical result of Dirichlet asserts that there are infinitely many triples of integers $(x_0,x_1,x_2)$ such that $|x_0+\alpha x_1+\beta x_2| < \max \{|x_1|,|x_2|\}^{-2}$ . In 1976, Schmidt asked what can be said under the restriction that $x_1$ and $x_2$ be positive. Upon denoting by $\gamma \cong 1.618$ the golden ratio, he proved that there are triples $(x_0,x_1,x_2) \in \mathbb {Z}^3$ with $x_1,x_2>0$ for which the product $|x_0 + \alpha x_1 + \beta x_2| \max \{|x_1|,|x_2|\}^\gamma $ is arbitrarily small. Although Schmidt later conjectured that $\gamma $ can be replaced by any number smaller than $2$ , Moshchevitin proved very recently that it cannot be replaced by a number larger than $1.947$ . In this paper, we present a construction of points $(1,\alpha ,\beta )$ showing that the result of Schmidt is in fact optimal. These points also possess strong additional Diophantine properties that are described in the paper.  相似文献   

16.
Let $\mathcal F ^a_\lambda $ be the PBW degeneration of the flag varieties of type $A_{n-1}$ . These varieties are singular and are acted upon with the degenerate Lie group $SL_n^a$ . We prove that $\mathcal F ^a_\lambda $ have rational singularities, are normal and locally complete intersections, and construct a desingularization $R_\lambda $ of $\mathcal F ^a_\lambda $ . The varieties $R_\lambda $ can be viewed as towers of successive $\mathbb{P }^1$ -fibrations, thus providing an analogue of the classical Bott–Samelson–Demazure–Hansen desingularization. We prove that the varieties $R_\lambda $ are Frobenius split. This gives us Frobenius splitting for the degenerate flag varieties and allows to prove the Borel–Weil type theorem for $\mathcal F ^a_\lambda $ . Using the Atiyah–Bott–Lefschetz formula for $R_\lambda $ , we compute the $q$ -characters of the highest weight $\mathfrak sl _n$ -modules.  相似文献   

17.
Let \(M_w = ({\mathbb {P}}^1)^n /\!/\hbox {SL}_2\) denote the geometric invariant theory quotient of \(({\mathbb {P}}^1)^n\) by the diagonal action of \(\hbox {SL}_2\) using the line bundle \(\mathcal {O}(w_1,w_2,\ldots ,w_n)\) on \(({\mathbb {P}}^1)^n\) . Let \(R_w\) be the coordinate ring of \(M_w\) . We give a closed formula for the Hilbert function of \(R_w\) , which allows us to compute the degree of \(M_w\) . The graded parts of \(R_w\) are certain Kostka numbers, so this Hilbert function computes stretched Kostka numbers. If all the weights \(w_i\) are even, we find a presentation of \(R_w\) so that the ideal \(I_w\) of this presentation has a quadratic Gröbner basis. In particular, \(R_w\) is Koszul. We obtain this result by studying the homogeneous coordinate ring of a projective toric variety arising as a degeneration of \(M_w\) .  相似文献   

18.
Let $R$ be a non-commutative prime ring, with center $Z(R)$ , extended centroid $C$ and let $F$ be a non-zero generalized derivation of $R$ . Denote by $L$ a non-central Lie ideal of $R$ . If there exists $0\ne a\in R$ such that $a[F(x),x]_k\in Z(R)$ for all $x\in L$ , where $k$ is a fixed integer, then one of the followings holds: (1) either there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x\in R$ , (2) or $R$ satisfies $s_4$ , the standard identity in $4$ variables, and $char(R)=2$ ; (3) or $R$ satisfies $s_4$ and there exist $q\in U, \gamma \in C$ such that $F(x)=qx+xq+\gamma x$ .  相似文献   

19.
We prove local regularity in Lebesgue spaces for weak solutions \(u\) of quasilinear elliptic systems whose off-diagonal coefficients are small when \(|u|\) is large: the faster off-diagonal coefficients decay, the higher integrability of \(u\) becomes.  相似文献   

20.
The Johnson graph \(J(v,k)\) has, as vertices, the \(k\) -subsets of a \(v\) -set \(\mathcal {V}\) and as edges the pairs of \(k\) -subsets with intersection of size \(k-1\) . We introduce the notion of a neighbour-transitive code in \(J(v,k)\) . This is a proper vertex subset \(\Gamma \) such that the subgroup \(G\) of graph automorphisms leaving \(\Gamma \) invariant is transitive on both the set \(\Gamma \) of ‘codewords’ and also the set of ‘neighbours’ of \(\Gamma \) , which are the non-codewords joined by an edge to some codeword. We classify all examples where the group \(G\) is a subgroup of the symmetric group \(\mathrm{Sym}\,(\mathcal {V})\) and is intransitive or imprimitive on the underlying \(v\) -set \(\mathcal {V}\) . In the remaining case where \(G\le \mathrm{Sym}\,(\mathcal {V})\) and \(G\) is primitive on \(\mathcal {V}\) , we prove that, provided distinct codewords are at distance at least \(3\) , then \(G\) is \(2\) -transitive on \(\mathcal {V}\) . We examine many of the infinite families of finite \(2\) -transitive permutation groups and construct surprisingly rich families of examples of neighbour-transitive codes. A major unresolved case remains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号