首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Partitioning mathematical programs for parallel solution   总被引:3,自引:0,他引:3  
This paper describes heuristics for partitioning a generalM × N matrix into arrowhead form. Such heuristics are useful for decomposing large, constrained, optimization problems into forms that are amenable to parallel processing. The heuristics presented can be easily implemented using publicly available graph partitioning algorithms. The application of such techniques for solving large linear programs is described. Extensive computational results on the effectiveness of our partitioning procedures and their usefulness for parallel optimization are presented. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.This material is based on research supported by National Science Foundation Grants CCR-9157632 and CDA-9024618, the Air Force Office of Scientific Research Grant F49620-94-1-0036 and the AT&T Foundation.  相似文献   

2.
On the convergence of Newton iterations to non-stationary points   总被引:1,自引:0,他引:1  
We study conditions under which line search Newton methods for nonlinear systems of equations and optimization fail due to the presence of singular non-stationary points. These points are not solutions of the problem and are characterized by the fact that Jacobian or Hessian matrices are singular. It is shown that, for systems of nonlinear equations, the interaction between the Newton direction and the merit function can prevent the iterates from escaping such non-stationary points. The unconstrained minimization problem is also studied, and conditions under which false convergence cannot occur are presented. Several examples illustrating failure of Newton iterations for constrained optimization are also presented. The paper also shows that a class of line search feasible interior methods cannot exhibit convergence to non-stationary points. This author was supported by Air Force Office of Scientific Research grant F49620-00-1-0162, Army Research Office Grant DAAG55-98-1-0176, and National Science Foundation grant INT-9726199.This author was supported by Department of Energy grant DE-FG02-87ER25047-A004.This author was supported by National Science Foundation grant CCR-9987818 and Department of Energy grant DE-FG02-87ER25047-A004.  相似文献   

3.
This paper concerns the notion of a sharp minimum on a set and its relationship to the proximal point algorithm. We give several equivalent definitions of the property and use the notion to prove finite termination of the proximal point algorithm.This material is based on research supported by National Science Foundation Grants DCR-8521228 and CCR-8723091, and Air Force Office of Scientific Research Grant AFOSR-86-0172.  相似文献   

4.
We present several applications of a recent space-partitioning technique of Chazelle, Sharir, and Welzl (Proceedings of the 6th Annual ACM Symposium on Computational Geometry, 1990, pp. 23–33). Our results include efficient algorithms for output-sensitive hidden surface removal, for ray shooting in two and three dimensions, and for constructing spanning trees with low stabbing number.Work on this paper has been supported by DIMACS, an NSF Science and Technology Center, under Grant STC-88-09684. The second author has been supported by Office of Naval Research Grants N00014-89-J-3042 and N00014-90-J-1284, by National Science Foundation Grant CCR-89-01484, and by grants from the U.S.-Israeli Binational Science Foundation, the Fund for Basic Research administered by the Israeli Academy of Sciences, and the G.I.F., the German-Israeli Foundation for Scientific Research and Development.  相似文献   

5.
We develop and compare three decomposition algorithms derived from the method of alternating directions. They may be viewed as block Gauss-Seidel variants of augmented Lagrangian approaches that take advantage of block angular structure. From a parallel computation viewpoint, they are ideally suited to a data parallel environment. Numerical results for large-scale multicommodity flow problems are presented to demonstrate the effectiveness of these decomposition algorithmims on the Thinking Machines CM-5 parallel supercomputer relative to the widely-used serial optimization package MINOS 5.4.This material is based on research supported by the Air Force Office of Scientific Research, Grants AFORS-89-0410 and F49620-1-0036, and by NSF Grants CCR-89-07671, CDA-90-24618, and CCR-93-06807. The work of the second author was supported partially by Grant 95.00732.CT01 from the Italian National Research Council (CNR).  相似文献   

6.
We study two-period nonlinear optimization problems whose parameters are uncertain. We assume that uncertain parameters are revealed in stages and model them using the adjustable robust optimization approach. For problems with polytopic uncertainty, we show that quasiconvexity of the optimal value function of certain subproblems is sufficient for the reducibility of the resulting robust optimization problem to a single-level deterministic problem. We relate this sufficient condition to the cone-quasiconvexity of the feasible set mapping for adjustable variables and present several examples and applications satisfying these conditions. This work was partially supported by the National Science Foundation, Grants CCR-9875559 and DMS-0139911, and by Grant-in-Aid for Scientific Research from the Ministry of Education, Sports, Science and Culture of Japan, Grant 16710110.  相似文献   

7.
We study the convergence properties of reduced Hessian successive quadratic programming for equality constrained optimization. The method uses a backtracking line search, and updates an approximation to the reduced Hessian of the Lagrangian by means of the BFGS formula. Two merit functions are considered for the line search: the 1 function and the Fletcher exact penalty function. We give conditions under which local and superlinear convergence is obtained, and also prove a global convergence result. The analysis allows the initial reduced Hessian approximation to be any positive definite matrix, and does not assume that the iterates converge, or that the matrices are bounded. The effects of a second order correction step, a watchdog procedure and of the choice of null space basis are considered. This work can be seen as an extension to reduced Hessian methods of the well known results of Powell (1976) for unconstrained optimization.This author was supported, in part, by National Science Foundation grant CCR-8702403, Air Force Office of Scientific Research grant AFOSR-85-0251, and Army Research Office contract DAAL03-88-K-0086.This author was supported by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy, under contracts W-31-109-Eng-38 and DE FG02-87ER25047, and by National Science Foundation Grant No. DCR-86-02071.  相似文献   

8.
We describe a cutting plane algorithm for solving combinatorial optimization problems. The primal projective standard-form variant of Karmarkar's algorithm for linear programming is applied to the duals of a sequence of linear programming relaxations of the combinatorial optimization problem.Computational facilities provided by the Cornell Computational Optimization Project supported by NSF Grant DMS-8706133 and by the Cornell National Supercomputer Facility. The Cornell National Supercomputer Facility is a resource of the Center for Theory and Simulation in Science and Engineering at Cornell Unversity, which is funded in part by the National Science Foundation, New York State, and the IBM Corporation. The research of both authors was partially supported by the U.S. Army Research Office through the Mathematical Sciences Institute of Cornell University.Research partially supported by ONR Grant N00014-90-J-1714.Research partially supported by NSF Grant ECS-8602534 and by ONR Contract N00014-87-K-0212.  相似文献   

9.
We investigate the quality of solutions obtained from sample-average approximations to two-stage stochastic linear programs with recourse. We use a recently developed software tool executing on a computational grid to solve many large instances of these problems, allowing us to obtain high-quality solutions and to verify optimality and near-optimality of the computed solutions in various ways. Research supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38, and by the National Science Foundation under Grant 9726385. Research supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38, and by the National Science Foundation under Grant DMS-0073770. Research supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38, and by the National Science Foundation under Grants 9726385 and 0082065.  相似文献   

10.
Global error bounds for possibly degenerate or nondegenerate monotone affine variational inequality problems are given. The error bounds are on an arbitrary point and are in terms of the distance between the given point and a solution to a convex quadratic program. For the monotone linear complementarity problem the convex program is that of minimizing a quadratic function on the nonnegative orthant. These bounds may form the basis of an iterative quadratic programming procedure for solving affine variational inequality problems. A strong upper semicontinuity result is also obtained which may be useful for finitely terminating any convergent algorithm by periodically solving a linear program.This material is based on research supported by Air Force Office of Scientific Research Grant AFOSR-89-0410 and National Science Foundation Grants CCR-9101801 and CCR-9157632.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号