首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
For large systems of linear equations, iterative methods provide attractive solution techniques. We describe the applicability and convergence of iterative methods of Krylov subspace type for an important class of symmetric and indefinite matrix problems, namely augmented (or KKT) systems. Specifically, we consider preconditioned minimum residual methods and discuss indefinite versus positive definite preconditioning. For a natural choice of starting vector we prove that when the definite and indenfinite preconditioners are related in the obvious way, MINRES (which is applicable in the case of positive definite preconditioning) and full GMRES (which is applicable in the case of indefinite preconditioning) give residual vectors with identical Euclidean norm at each iteration. Moreover, we show that the convergence of both methods is related to a system of normal equations for which the LSQR algorithm can be employed. As a side result, we give a rare example of a non-trivial normal(1) matrix where the corresponding inner product is explicitly known: a conjugate gradient method therefore exists and can be employed in this case. This work was supported by British Council/German Academic Exchange Service Research Collaboration Project 465 and NATO Collaborative Research Grant CRG 960782  相似文献   

2.
In recent years, competitive domain-decomposed preconditioned iterative techniques of Krylov-Schwarz type have been developed for nonsymmetric linear elliptic systems. Such systems arise when convection-diffusion-reaction problems from computational fluid dynamics or heat and mass transfer are linearized for iterative solution. Through domain decomposition, a large problem is divided into many smaller problems whose requirements for coordination can be controlled to allow effective solution on parallel machines. A central question is how to choose these small problems and how to arrange the order of their solution. Different specifications of decomposition and solution order lead to a plethora of algorithms possessing complementary advantages and disadvantages. In this report we compare several methods, including the additive Schwarz algorithm, the classical multiplicative Schwarz algorithm, an accelerated multiplicative Schwarz algorithm, the tile algorithm, the CGK algorithm, the CSPD algorithm, and also the popular global ILU-family of preconditioners, on some nonsymmetric or indefinite elliptic model problems discretized by finite difference methods. The preconditioned problems are solved by the unrestarted GMRES method. A version of the accelerated multiplicative Schwarz method is a consistently good performer.  相似文献   

3.
We discuss a class of preconditioning methods for the iterative solution of symmetric algebraic saddle point problems, where the (1, 1) block matrix may be indefinite or singular. Such problems may arise, e.g. from discrete approximations of certain partial differential equations, such as the Maxwell time harmonic equations. We prove that, under mild assumptions on the underlying problem, a class of block preconditioners (including block diagonal, triangular and symmetric indefinite preconditioners) can be chosen in a way which guarantees that the convergence rate of the preconditioned conjugate residuals method is independent of the discretization mesh parameter. We provide examples of such preconditioners that do not require additional scaling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
We consider the use of a class of constraint preconditioners for the application of the Krylov subspace iterative method to the solution of large nonsymmetric, indefinite linear systems. The eigensolution distribution of the preconditioned matrix is determined and the convergence behavior of a Krylov subspace method such as GMRES is described. The choices of the parameter matrices and the implementation of the preconditioning step are discussed. Numerical experiments are presented. This work is supported by NSFC Projects 10171021 and 10471027.  相似文献   

5.
This work is concerned with the convergence properties and the numerical analysis of the preconditioned conjugate gradient (PCG) method applied to the solution of indefinite linear systems arising in nonlinear optimization. Our approach is based on the choice of quasidefinite preconditioners and of a suitable factorization routine. Some theoretical and numerical results about these preconditioners are obtained. Furthermore, we show the behaviour of the PCG method for different formulations of the indefinite system and we compare the effectiveness of the proposed variants. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
A QMR-based interior-point algorithm for solving linear programs   总被引:5,自引:0,他引:5  
A new approach for the implementation of interior-point methods for solving linear programs is proposed. Its main feature is the iterative solution of the symmetric, but highly indefinite 2×2-block systems of linear equations that arise within the interior-point algorithm. These linear systems are solved by a symmetric variant of the quasi-minimal residual (QMR) algorithm, which is an iterative solver for general linear systems. The symmetric QMR algorithm can be combined with indefinite preconditioners, which is crucial for the efficient solution of highly indefinite linear systems, yet it still fully exploits the symmetry of the linear systems to be solved. To support the use of the symmetric QMR iteration, a novel stable reduction of the original unsymmetric 3×3-block systems to symmetric 2×2-block systems is introduced, and a measure for a low relative accuracy for the solution of these linear systems within the interior-point algorithm is proposed. Some indefinite preconditioners are discussed. Finally, we report results of a few preliminary numerical experiments to illustrate the features of the new approach.  相似文献   

7.
New accurate eigenvalue bounds for symmetric matrices of saddle point form are derived and applied for both unpreconditioned and preconditioned versions of the matrices. The estimates enable a better understanding of how preconditioners should be chosen. The preconditioners provide efficient iterative solution of the corresponding linear systems with, for some important applications, an optimal order of computational complexity. The methods are applied for Stokes problem and for linear elasticity problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a class of limited memory preconditioners (LMP) for solving linear systems of equations with symmetric indefinite matrices and multiple right‐hand sides. These preconditioners based on limited memory quasi‐Newton formulas require a small number k of linearly independent vectors and may be used to improve an existing first‐level preconditioner. The contributions of the paper are threefold. First, we derive a formula to characterize the spectrum of the preconditioned operator. A spectral analysis of the preconditioned matrix shows that the eigenvalues are all real and that the LMP class is able to cluster at least k eigenvalues at 1. Secondly, we show that the eigenvalues of the preconditioned matrix enjoy interlacing properties with respect to the eigenvalues of the original matrix provided that the k linearly independent vectors have been prior projected onto the invariant subspaces associated with the eigenvalues of the original matrix in the open right and left half‐plane, respectively. Third, we focus on theoretical properties of the Ritz‐LMP variant, where Ritz information is used to determine the k vectors. Finally, we illustrate the numerical behaviour of the Ritz limited memory preconditioners on realistic applications in structural mechanics that require the solution of sequences of large‐scale symmetric saddle‐point systems. Numerical experiments show the relevance of the proposed preconditioner leading to a significant decrease in terms of computational operations when solving such sequences of linear systems. A saving of up to 43% in terms of computational effort is obtained on one of these applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Linear systems of the form Ax = b, where the matrix A is symmetric and positive definite, often arise from the discretization of elliptic partial differential equations. A very successful method for solving these linear systems is the preconditioned conjugate gradient method. In this paper, we study parallel preconditioners for the conjugate gradient method based on the block two-stage iterative methods. Sufficient conditions for the validity of these preconditioners are given. Computational results of these preconditioned conjugate gradient methods on two parallel computing systems are presented.  相似文献   

10.
For large sparse systems of linear equations iterative techniques are attractive. In this paper, we study a splitting method for an important class of symmetric and indefinite system. Theoretical analyses show that this method converges to the unique solution of the system of linear equations for all t>0 (t is the parameter). Moreover, all the eigenvalues of the iteration matrix are real and nonnegative and the spectral radius of the iteration matrix is decreasing with respect to the parameter t. Besides, a preconditioning strategy based on the splitting of the symmetric and indefinite coefficient matrices is proposed. The eigensolution of the preconditioned matrix is described and an upper bound of the degree of the minimal polynomials for the preconditioned matrix is obtained. Numerical experiments of a model Stokes problem and a least‐squares problem with linear constraints presented to illustrate the effectiveness of the method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号