首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we investigate a boundary problem with non‐local conditions for mixed parabolic–hyperbolic‐type equation with three lines of type changing with Caputo fractional derivative in the parabolic part. We equivalently reduce considered problem to the system of second kind Volterra integral equations. In the parabolic part, we use solution of the first boundary problem with appropriate Green's function, and in hyperbolic parts, we use corresponding solutions of the Cauchy problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
对一类线性以及非线性抛物型时滞微分方程的解在第一或第二边值条件下解振动的充分必要条件进行了讨论,给出了解振动的一些结论.并且对一类线性以及带强迫项的非线性双曲型时滞微分方程的解在第一或第二边值条件下解振动的充分必要条件进行了讨论,也给出了一些结论.  相似文献   

3.
4.
Some relation along an additional characteristic is constructed for a class of Friedrichs hyperbolic systems to which the wave equation is reduced. The statement is proven about preservation of a vortex. The conditions are stated for the solutions to Friedrichs hyperbolic systems of this class to remain solutions to the initial wave equation.  相似文献   

5.
The multigrid waveform relaxation (WR) algorithm has been fairly studied and implemented for parabolic equations. It has been found that the performance of the multigrid WR method for a parabolic equation is practically the same as that of multigrid iteration for the associated steady state elliptic equation. However, the properties of the multigrid WR method for hyperbolic problems are relatively unknown. This paper studies the multigrid acceleration to the WR iteration for hyperbolic problems, with a focus on the convergence comparison between the multigrid WR iteration and the multigrid iteration for the corresponding steady state equations. Using a Fourier-Laplace analysis in two case studies, it is found that the multigrid performance on hyperbolic problems no longer shares the close resemblance in convergence factors between the WR iteration for parabolic equations and the iteration for the associated steady state equations.  相似文献   

6.
Semilinear hyperbolic and parabolic initial–boundary value problems are studied. Criteria for solutions of a semilinear hyperbolic equation and a parabolic equation with general forcing term and general boundary condition to blow up in finite time are obtained.  相似文献   

7.
王增桂 《中国科学:数学》2013,43(12):1193-1208
本文提出并研究带有线性外力场的双曲平均曲率流,通过凸曲线的支撑函数,导出一个双曲型Monge-Ampère 方程并将其转化成Riemann 不变量满足的拟线性双曲方程组。利用拟线性双曲方程组Cauchy 问题的局部解理论,讨论带有线性外力场的双曲平均曲率流Cauchy 问题经典解的生命跨度(即局部解存在的最大时间区间)。  相似文献   

8.
We discuss the local existance and uniqueness of solutions of certain nonstrictly hyperbolic systems, with Hölder continuous coefficients with respect to time variable. We reduce the nonstrictly hyperbolic systems to the parabolic ones, then we shall prove them by use of Tanabe-Sobolevskis method.  相似文献   

9.
In this paper, the initial-value problem for integral-differential equation of the hyperbolic type in a Hilbert space H is considered. The unique solvability of this problem is established. The stability estimates for the solution of this problem are obtained. The difference scheme approximately solving this problem is presented. The stability estimates for the solution of this difference scheme are obtained. In applications, the stability estimates for the solutions of the nonlocal boundary problem for one-dimensional integral-differential equation of the hyperbolic type with two dependent limits and of the local boundary problem for multidimensional integral-differential equation of the hyperbolic type with two dependent limits are obtained. The difference schemes for solving these two problems are presented. The stability estimates for the solutions of these difference schemes are obtained.  相似文献   

10.
这篇文章主要考虑下列以有限Radon测度为初值的非线性双曲方程的Cauchy问题u_t+(u~m)_x=u~p,其中m1,1pm是给定常数.特别的,在文中得到了上述问题BV解的存在唯一性.  相似文献   

11.
瞬态导热分析需要考虑非傅立叶效应.通过对抛物型及双曲型热传导方程,以及耦合热传导方程后的波动方程的数值求解,研究了非傅立叶效应下导热过程中的波动响应.结果表明,双曲型热传导过程具有明显的波动特性,所引起的波动响应前沿值成倍提高,且呈现显著的跃变行为,而波动峰值外的部位围绕着初始值小幅波动.  相似文献   

12.
考虑了一类具材料阻尼的非线性双曲型方程初边值问题整体解的不存在性.分别采用能量方法、Jensen不等式和凹性方法证明了该问题整体解的不存在性定理.作为主要结果的应用,给出了3个例子.  相似文献   

13.
This paper is concerned with the generalized nonlinear Schrödinger equation with parabolic law and dual‐power law. Abundant explicit and exact solutions of the generalized nonlinear Schrödinger equation with parabolic law and dual‐power law are derived uniformly by using the first integral method. These exact solutions are include that of extended hyperbolic function solutions, periodic wave solutions of triangle functions type, exponential form solution, and complex hyperbolic trigonometric function solutions and so on. The results obtained confirm that the first integral method is an efficient technique for analytic treatment of a wide variety of nonlinear systems of partial DEs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
In the present paper the unique solvability of two non‐local problems for the mixed parabolic‐hyperbolic type equation with complex spectral parameter is proved. Sectors for values of the spectral parameter where these problems have unique solutions are shown. Uniqueness of the solution is proved by the method of energy integral and existence is proved by the method of integral equations. In particular cases, eigenvalues and corresponding eigenfunctions of the studied problems are found. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
邹敏  陈荣三  刘安平 《数学杂志》2017,37(5):1007-1012
本文研究了带泛函参数的非线性脉冲时滞双曲方程的振动性问题.利用积分平均法和里卡蒂方法得到了这类方程解的振动性的一个充分条件,对非线性时滞双曲方程解的震动性进行了推广,能更好地利用一些现有的脉冲时滞常微分方程解的振动性的结论.  相似文献   

16.
Numerical solution of hyperbolic partial differential equation with an integral condition continues to be a major research area with widespread applications in modern physics and technology. Many physical phenomena are modeled by nonclassical hyperbolic boundary value problems with nonlocal boundary conditions. In place of the classical specification of boundary data, we impose a nonlocal boundary condition. Partial differential equations with nonlocal boundary specifications have received much attention in last 20 years. However, most of the articles were directed to the second‐order parabolic equation, particularly to heat conduction equation. We will deal here with new type of nonlocal boundary value problem that is the solution of hyperbolic partial differential equations with nonlocal boundary specifications. These nonlocal conditions arise mainly when the data on the boundary can not be measured directly. Several finite difference methods have been proposed for the numerical solution of this one‐dimensional nonclassic boundary value problem. These computational techniques are compared using the largest error terms in the resulting modified equivalent partial differential equation. Numerical results supporting theoretical expectations are given. Restrictions on using higher order computational techniques for the studied problem are discussed. Suitable references on various physical applications and the theoretical aspects of solutions are introduced at the end of this article. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

17.
The Benjamin-Bona-Mahony (BBM) equation represents the unidirectional propagation of nonlinear dispersive long waves, which has a clear physical background, and is a more suitable mathematical and physical equation than the KdV equation. Therefore, the research on the BBM equation is very important. In this article, we put forward an effective algorithm, the modified hyperbolic function expanding method, to build the solutions of the BBM equation. We, by utilizing the modified hyperbolic function expanding method, obtain the traveling wave solutions of the BBM equation. When the parameters are taken as special values, the solitary waves are also derived from the traveling waves. The traveling wave solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions. The modified hyperbolic function expanding method is direct, concise, elementary and effective, and can be used for many other nonlinear partial differential equations.  相似文献   

18.
This work is concerned with the study of an initial boundary value problem for a non-conserved phase field system arising from the Penrose-Fife approach to the kinetics of phase transitions. The system couples a nonlinear parabolic equation for the absolute temperature with a nonlinear hyperbolic equation for the phase variable χ, which is characterized by the presence of an inertial term multiplied by a small positive coefficient μ. This feature is the main consequence of supposing that the response of χ to the generalized force (which is the functional derivative of a free energy potential and arises as a consequence of the tendency of the free energy to decay towards a minimum) is subject to delay. We first obtain well-posedness for the resulting initial-boundary value problem in which the heat flux law contains a special function of the absolute temperature ϑ, i.e. α(ϑ) ∼ ϑ − 1/ϑ. Then we prove convergence of any family of weak solutions of the parabolic-hyperbolic model to a weak solution of the standard Penrose-Fife model as μ ↘ 0. However, the main novelty of this paper consists in proving some regularity results on solutions of the parabolic-hyperbolic system (including also estimates of Moser type) that could be useful for the study of the longterm dynamics.  相似文献   

19.
In this article, we extend the recently developed weak Galerkin method to solve the second‐order hyperbolic wave equation. Many nice features of the weak Galerkin method have been demonstrated for elliptic, parabolic, and a few other model problems. This is the initial exploration of the weak Galerkin method for solving the wave equation. Here we successfully developed and established the stability and convergence analysis for the weak Galerkin method for solving the wave equation. Numerical experiments further support the theoretical analysis. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 868–884, 2017  相似文献   

20.
We consider a nonlinear nonautonomous hyperbolic equation with dissipation and with a small parameter multiplying the highest derivative with respect to time. This equation also involves a rapidly oscillating external force. Using a standard technique for constructing the trajectory attractor, we can prove the convergence of the attractor of a nonlinear nonautonomous hyperbolic equation with dissipation to the attractor of the corresponding parabolic equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号