首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modeling mortality co-movements for multiple populations have significant implications for mortality/longevity risk management. A few two-population mortality models have been proposed to date. They are typically based on the assumption that the forecasted mortality experiences of two or more related populations converge in the long run. This assumption might be justified by the long-term mortality co-integration and thus be applicable to longevity risk modeling. However, it seems too strong to model the short-term mortality dependence. In this paper, we propose a two-stage procedure based on the time series analysis and a factor copula approach to model mortality dependence for multiple populations. In the first stage, we filter the mortality dynamics of each population using an ARMA–GARCH process with heavy-tailed innovations. In the second stage, we model the residual risk using a one-factor copula model that is widely applicable to high dimension data and very flexible in terms of model specification. We then illustrate how to use our mortality model and the maximum entropy approach for mortality risk pricing and hedging. Our model generates par spreads that are very close to the actual spreads of the Vita III mortality bond. We also propose a longevity trend bond and demonstrate how to use this bond to hedge residual longevity risk of an insurer with both annuity and life books of business.  相似文献   

2.
An insurance company selling life annuities has to use projected life tables to describe the survival of policyholders. Such life tables are generated by stochastic processes governing the future path of mortality. To fix the ideas, the standard Lee-Carter model for mortality projection is adopted here. In that context, the paper purposes to examine the consequences of working with random survival probabilities. Various stochastic inequalities are derived, showing that the risk borne by the annuity provider is increased compared to the classical independent case. Moreover, the type of dependence existing between the insured life times is carefully examined. The paper also deals with the computation of ruin probabilities and large portfolio approximations.   相似文献   

3.
In this paper, we propose two risk hedge schemes in which a life insurer (an annuity provider) can transfer mortality (longevity) risk of a portfolio of life (annuity) exposures to a financial intermediary by paying the hedging premium of a mortality-linked security. The optimal units of the mortality-linked security which maximize hedge effectiveness for a life insurer (an annuity provider) can be derived as closed-form formulas under the risk hedge schemes. Numerical illustrations show that the risk hedge schemes can significantly hedge the downside risk of loss due to mortality (longevity) risk for the life insurer (annuity provider) under some stochastic mortality models. Besides, finding an optimal weight of a portfolio of life and annuity business, the financial intermediary can reduce the sensitivity to mortality rates but the model risk; a security loading may be imposed on the hedge premium for a higher probability of gain to compensate the financial intermediary for the inevitable model risk.  相似文献   

4.
This paper introduces mortality dependence in multi-country mortality modeling using a dynamic copula approach. Specifically, we use time-varying copula models to capture the mortality dependence structure across countries, examining both symmetric and asymmetric dependence structures. In addition, to capture the phenomenon of a heavy tail for the multi-country mortality index, we consider not only the setting of Gaussian innovations but also non-Gaussian innovations under the Lee–Carter framework model. As tests of the goodness of fit of different dynamic copula models, the pattern of mortality dependence, and the distribution of the innovations, we used empirical mortality data from Finland, France, the Netherlands, and Sweden. To understand the effect of mortality dependence on longevity derivatives, we also built a valuation framework for pricing a survivor index swap, then investigated the fair swap rates of a survivor swap numerically. We demonstrate that failing to consider the dynamic copula mortality model and non-Gaussian innovations would lead to serious underestimations of the swap rates and loss reserves.  相似文献   

5.
This paper discusses the choice of an appropriate longevity index to track the improvements in mortality in industrialized countries. Period life expectancies computed from national life tables turn out to be efficient in this context. A detailed analysis of the predictive distribution of this longevity index is performed in the Lee–Carter model where the period life expectancy is just a functional of the underlying time index.  相似文献   

6.
In this paper we suggest solutions to the actuaries, facing the problem of estimating future mortality tables, especially in cases where there is a lack of relevant data and where the tendencies are not easy to estimate directly. We propose the utilization of external sources of information in the form of other, published mortality tables and use formal statistical tests to decide among these possible candidates. The procedure can also be applied for checking e.g. the goodness of mortality selection factors. We suggest the use of parametric families in modelling; for example the simple 2-parameter Azbel model. We conclude the paper by a simulation study which allows for the quantification of the possible risks related to unforeseen changes in the mortality tables in the future. To calibrate the variances of these models, initial estimates are needed, which we get by the Lee–Carter method.  相似文献   

7.
Parametric mortality models capture the cross section of mortality rates. These models fit the older ages better, because of the more complex cross section of mortality at younger and middle ages. Dynamic parametric mortality models fit a time series to the parameters, such as a Vector-auto-regression (VAR), in order to capture trends and uncertainty in mortality improvements. We consider the full age range using the Heligman and Pollard (1980) model, a cross-sectional mortality model with parameters that capture specific features of different age ranges. We make the Heligman–Pollard model dynamic using a Bayesian Vector Autoregressive (BVAR) model for the parameters and compare with more commonly used VAR models. We fit the models using Australian data, a country with similar mortality experience to many developed countries. We show how the Bayesian Vector Autoregressive (BVAR) models improve forecast accuracy compared to VAR models and quantify parameter risk which is shown to be significant.  相似文献   

8.
In most methods for modeling mortality rates, the idiosyncratic shocks are assumed to be homoskedastic. This study investigates the conditional heteroskedasticity of mortality in terms of statistical time series. We start from testing the conditional heteroskedasticity of the period effect in the naïve Lee-Carter model for some mortality data. Then we introduce the Generalized Dynamic Factor method and the multivariate BEKK GARCH model to describe mortality dynamics and the conditional heteroskedasticity of mortality. After specifying the number of static factors and dynamic factors by several variants of information criterion, we compare our model with other two models, namely, the Lee-Carter model and the state space model. Based on several error-based measures of performance, our results indicate that if the number of static factors and dynamic factors is properly determined, the method proposed dominates other methods. Finally, we use our method combined with Kalman filter to forecast the mortality rates of Iceland and period life expectancies of Denmark, Finland, Italy and Netherlands.  相似文献   

9.
We introduce a model for the mortality rates of multiple populations. To build the proposed model we investigate to what extent a common age effect can be found among the mortality experiences of several countries and use a common principal component analysis to estimate a common age effect in an age–period model for multiple populations. The fit of the proposed model is then compared to age–period models fitted to each country individually, and to the fit of the model proposed by Li and Lee (2005).Although we do not consider stochastic mortality projections in this paper, we argue that the proposed common age effect model can be extended to a stochastic mortality model for multiple populations, which allows to generate mortality scenarios simultaneously for all considered populations. This is particularly relevant when mortality derivatives are used to hedge the longevity risk in an annuity portfolio as this often means that the underlying population for the derivatives is not the same as the population in the annuity portfolio.  相似文献   

10.
11.
Forecasts of female and male mortality that are conducted independently run the risk of projecting implausible sex differentials and fail to exploit correlations that are known to exist between the sexes. We present a new model for the simultaneous modeling of female and male mortality. The model casts mortality as a complex-valued process where the real and imaginary parts correspond to female and male mortalities, respectively. Calculations proceed similarly to the usual Lee–Carter model, via the singular value decomposition, albeit in complex form. Initial applications suggest that the complex Lee–Carter gives fits that are broadly comparable to independent real fits, while offering the advantage of explicit modeling of the relationship between the sexes. Furthermore, model parameters are informative and easily-interpretable.  相似文献   

12.
In this paper, we propose an intensity-based framework for surrender modeling. We model the surrender decision under the assumption of stochastic intensity and use, for comparative purposes, the affine models of Vasicek and Cox–Ingersoll–Ross for deriving closed-form solutions of the policyholder’s probability of surrendering the policy. The introduction of a closed-form solution is an innovative aspect of the model we propose. We evaluate the impact of dynamic policyholders’ behavior modeling the dependence between interest rates and surrendering (affine dependence) with the assumption that mortality rates are independent of interest rates and surrendering. Finally, using experience-based decrement tables for both surrendering and mortality, we explain the calibration procedure for deriving our model’s parameters and report numerical results in terms of best estimate of liabilities for life insurance under Solvency II.  相似文献   

13.
Mortality forecasting has received increasing interest during recent decades due to the negative financial effects of continuous longevity improvements on public and private institutions’ liabilities. However, little attention has been paid to forecasting mortality from a cohort perspective. In this article, we introduce a novel methodology to forecast adult cohort mortality from age-at-death distributions. We propose a relational model that associates a time-invariant standard to a series of fully and partially observed distributions. Relation is achieved via a transformation of the age-axis. We show that cohort forecasts can improve our understanding of mortality developments by capturing distinct cohort effects, which might be overlooked by a conventional age–period perspective. Moreover, mortality experiences of partially observed cohorts are routinely completed. We illustrate our methodology on adult female mortality for cohorts born between 1835 and 1970 in two high-longevity countries using data from the Human Mortality Database.  相似文献   

14.
A hierarchical model is developed for the joint mortality analysis of pension scheme datasets. The proposed model allows for a rigorous statistical treatment of missing data. While our approach works for any missing data pattern, we are particularly interested in a scenario where some covariates are observed for members of one pension scheme but not the other. Therefore, our approach allows for the joint modelling of datasets which contain different information about individual lives. The proposed model generalizes the specification of parametric models when accounting for covariates. We consider parameter uncertainty using Bayesian techniques. Model parametrization is analysed in order to obtain an efficient MCMC sampler, and address model selection. The inferential framework described here accommodates any missing-data pattern, and turns out to be useful to analyse statistical relationships among covariates. Finally, we assess the financial impact of using the covariates, and of the optimal use of the whole available sample when combining data from different mortality experiences.  相似文献   

15.
Mortality rates are known to depend on socio-economic and behavioral risk factors, and actuarial calculations for life insurance policies usually reflect this. It is typically assumed, however, that these risk factors are observed only at policy issue, and the impact of changes that occur later is not considered. In this paper, we present a discrete-time, multi-state model for risk factor changes and mortality. It allows one to more accurately describe mortality dynamics and quantify variability in mortality. This model is extended to reflect health status and then used to analyze the impact of selective lapsation of life insurance policies and to predict mortality under reentry term insurance.  相似文献   

16.
Recent developments in actuarial literature have shown that credibility theory can serve as an effective tool in mortality modelling, leading to accurate forecasts when applied to single or multi-population datasets. This paper presents a crossed classification credibility formulation of the Lee–Carter method particularly designed for multi-population mortality modelling. Differently from the standard Lee–Carter methodology, where the time index is assumed to follow an appropriate time series process, herein, future mortality dynamics are estimated under a crossed classification credibility framework, which models the interactions between various risk factors (e.g. genders, countries). The forecasting performances between the proposed model, the original Lee–Carter model and two multi-population Lee–Carter extensions are compared for both genders of multiple countries. Numerical results indicate that the proposed model produces more accurate forecasts than the Lee–Carter type models, as evaluated by the mean absolute percentage forecast error measure. Applications with life insurance and annuity products are also provided and a stochastic version of the proposed model is presented.  相似文献   

17.
In this paper, we investigate the construction of mortality indexes using the time-varying parameters in common stochastic mortality models. We first study how existing models can be adapted to satisfy the new-data-invariant property, a property that is required to ensure the resulting mortality indexes are tractable by market participants. Among the collection of adapted models, we find that the adapted Model M7 (the Cairns–Blake–Dowd model with cohort and quadratic age effects) is the most suitable model for constructing mortality indexes. One basis of this conclusion is that the adapted model M7 gives the best fitting and forecasting performance when applied to data over the age range of 40–90 for various populations. Another basis is that the three time-varying parameters in it are highly interpretable and rich in information content. Based on the three indexes created from this model, one can write a standardized mortality derivative called K-forward, which can be used to hedge longevity risk exposures. Another contribution of this paper is a method called key K-duration that permits one to calibrate a longevity hedge formed by K-forward contracts. Our numerical illustrations indicate that a K-forward hedge has a potential to outperform a q-forward hedge in terms of the number of hedging instruments required.  相似文献   

18.
Recently, the actuarial professions in various countries have adopted an innovative two-dimensional approach to projecting future mortality. In contrast to the conventional approach, the two-dimensional approach permits mortality improvement rates to vary with not only age but also time. Despite being an important breakthrough, the currently used two-dimensional mortality improvement scales are subject to several limitations, most notably a heavy reliance on subjective judgments and a lack of measures of uncertainty. In view of these limitations, in this paper we introduce a new model known as the heat wave model, in which short- and long-term mortality improvements are treated respectively as ‘heat waves’ that taper off over time and ‘background improvements’ that always exist. Using the heat wave model, one can derive two-dimensional mortality improvement scales that entail minimal subjective judgment and include measures of the uncertainty.  相似文献   

19.
The present paper proposes an evolutionary credibility model that describes the joint dynamics of mortality through time in several populations. Instead of modeling the mortality rate levels, the time series of population-specific mortality rate changes, or mortality improvement rates are considered and expressed in terms of correlated time factors, up to an error term. Dynamic random effects ensure the necessary smoothing across time, as well as the learning effect. They also serve to stabilize successive mortality projection outputs, avoiding dramatic changes from one year to the next. Statistical inference is based on maximum likelihood, properly recognizing the random, hidden nature of underlying time factors. Empirical illustrations demonstrate the practical interest of the approach proposed in the present paper.  相似文献   

20.
Graduation by mathematical formula is recast as problem of statistical estimation. The method of maximum likelihood is used to determine the estimates of the parameters. Theory is developed to allow for estimation without resorting to the usual ‘exposure’ formulas. Both single and multiple decrement models are considered. Theoretical results are obtained for some specific mortality models. Numerical procedures to obtain the estimates are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号