首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
In this paper, we study the global existence and the asymptotic behavior of classical solution of the Cauchy problem for quasilinear hyperbolic system with constant multiple and linearly degenerate characteristic fields. We prove that the global C1 solution exists uniquely if the BV norm of the initial data is sufficiently small. Based on the existence result on the global classical solution, we show that, when the time t tends to the infinity, the solution approaches a combination of C1 traveling wave solutions. Finally, we give an application to the equation for time-like extremal surfaces in the Minkowski space-time R1+n.  相似文献   

2.
In this paper we consider a quasilinear viscoelastic wave equation in canonical form with the homogeneous Dirichlet boundary condition. We prove that, for certain class of relaxation functions and certain initial data in the stable set, the decay rate of the solution energy is similar to that of the relaxation function. This result improves earlier ones obtained by Messaoudi and Tatar [S.A. Messaoudi, N.-E. Tatar, Global existence and uniform stability of solutions for a quasilinear viscoelastic problem, Math. Methods Appl. Sci. 30 (2007) 665-680] in which only the exponential and polynomial decay rates are considered. Conversely, for certain initial data in the unstable set, there are solutions that blow up in finite time. The last result is new, since it allows a larger class of initial energy which may take positive values.  相似文献   

3.
We prove a result of formation of singularities for the classical solutions of the planar motion of a nonlinear elastic string. In a particular, but physically relevant, case we give a characterization of the global C1 solutions with positive tension.  相似文献   

4.
半线性波动方程的高维古沙问题   总被引:1,自引:1,他引:0  
In this paper we study the Goursat problem for semilinear wave equations with zero boundary condition in which the boundary is the characteristic cone for wave operator. Our result states that the solution is Lipschitz and is smooth awayfrom the characteristic cone.  相似文献   

5.
Using an integral formula of Droniou and Imbert (2005) for the fractional Laplacian, we define an entropy formulation for fractal conservation laws with pure fractional diffusion of order λ ∈]0, 1]. This allows to show the existence and the uniqueness of a solution in the L framework. We also establish a result of controled speed of propagation that generalizes the finite propagation speed result of scalar conservation laws. We finally let the non-local term vanish to approximate solutions of scalar conservation laws, with optimal error estimates for BV initial conditions as Kuznecov (1976) for λ = 2 and Droniou (2003) for λ ∈]1, 2].  相似文献   

6.
This paper is concerned with the asymptotic behavior of global classical solutions of diagonalizable quasilinear hyperbolic systems with linearly degenerate characteristic fields. On the basis of the existence result for the global classical solution, we prove that when t tends to the infinity, the solution approaches a combination of C1 traveling wave solutions, provided that the C1 norm and the BV norm of the initial data are bounded but possibly large. In contrast to former results obtained by Liu and Zhou [J. Liu, Y. Zhou, Asymptotic behaviour of global classical solutions of diagonalizable quasilinear hyperbolic systems, Math. Methods Appl. Sci. 30 (2007) 479-500], ours do not require their assumption that the system is rich in the sense of Serre. Applications include that to the one-dimensional Born-Infeld system arising in string theory and high energy physics.  相似文献   

7.
We show the asymptotic behavior of the solution to the Cauchy problem of the two-dimensional damped wave equation. It is shown that the solution of the linear damped wave equation asymptotically decompose into a solution of the heat and wave equations and the difference of those solutions satisfies the LpLq type estimate. This is a two-dimensional generalization of the three-dimensional result due to Nishihara (Math. Z. 244 (2003) 631). To show this, we use the Fourier transform and observe that the evolution operators of the damped wave equation can be approximated by the solutions of the heat and wave equations. By using the LpLq estimate, we also discuss the asymptotic behavior of the semilinear problem of the damped wave equation with the power nonlinearity |u|αu. Our result covers the whole super critical case α>1, where the α=1 is well known as the Fujita exponent when n=2.  相似文献   

8.
A finite volume method with grid adaption is applied to two hyperbolic problems: the ultra-relativistic Euler equations, and a scalar conservation law. Both problems are considered in two space dimensions and share the common feature of moving shock waves. In contrast to the classical Euler equations, the derivation of appropriate initial conditions for the ultra-relativistic Euler equations is a non-trivial problem that is solved using one-dimensional shock conditions and the Lorentz invariance of the system. The discretization of both problems is based on a finite volume method of second order in both space and time on a triangular grid. We introduce a variant of the min-mod limiter that avoids unphysical states for the Euler system. The grid is adapted during the integration process. The frequency of grid adaption is controlled automatically in order to guarantee a fine resolution of the moving shock fronts. We introduce the concept of “width refinement” which enlarges the width of strongly refined regions around the shock fronts; the optimal width is found by a numerical study. As a result we are able to improve efficiency by decreasing the number of adaption steps. The performance of the finite volume scheme is compared with several lower order methods.  相似文献   

9.
In this paper we study the stability of the nonlinear wave structure caused by the attack of an incident shock on an interface of two different kinds of media. The attack will produce a reflected wave and a refracted wave, and also let the interface deflected. In this paper we will mainly study the case, when the reflected wave is a shock, and the flow between the reflected wave and the refracted shock is relatively subsonic. Our result indicates that the wave structure and the flow field for the reflection-refraction problem in this case is conditionally stable.To describe the motion of the fluid we use the inviscid Euler system as the mathematical model. The reflection-refraction problem can be reduced to a free boundary value problem, where the unknown reflected shock and refracted shock are free boundaries, and the deflected interface is also to be determined. In the proof of the existence and the stability of the corresponding wave structure we apply the Lagrange transformation to fix the interface and the decoupling technique to decouple the elliptic-hyperbolic composite system in its principal part. Meanwhile, some efficient weighted Sobolev estimates are established to derive the existence for corresponding nonlinear problems.  相似文献   

10.
This paper studies the Cauchy problem for the coupled system of nonlinear Klein-Gordon equations with damping terms. We first state the existence of standing wave with ground state, based on which we prove a sharp criteria for global existence and blow-up of solutions when E(0)<d. We then introduce a family of potential wells and discuss the invariant sets and vacuum isolating behavior of solutions for 0<E(0)<d and E(0)≤0, respectively. Furthermore, we prove the global existence and asymptotic behavior of solutions for the case of potential well family with 0<E(0)<d. Finally, a blow-up result for solutions with arbitrarily positive initial energy is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号