首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

2.
It is shown that the following three limits
  相似文献   

3.
The existence of at least one solution of the following multi-point boundary value problem
$ \left\{ \begin{gathered} [\varphi (x'(t))]' = f(t,x(t),x'(t)),t \in (0,1), \hfill \\ x(0) - \sum\limits_{i = 1}^m {\alpha _i x'(\xi _i ) = 0,} \hfill \\ x'(1) - \sum\limits_{i = 1}^m {\beta _i x(\xi _i ) = 0} \hfill \\ \end{gathered} \right. $ \left\{ \begin{gathered} [\varphi (x'(t))]' = f(t,x(t),x'(t)),t \in (0,1), \hfill \\ x(0) - \sum\limits_{i = 1}^m {\alpha _i x'(\xi _i ) = 0,} \hfill \\ x'(1) - \sum\limits_{i = 1}^m {\beta _i x(\xi _i ) = 0} \hfill \\ \end{gathered} \right.   相似文献   

4.
The paper suggests some conditions on the lower order terms, which provide that the solution of the Dirichlet problem for the general elliptic equation of the second order
$ \begin{gathered} - \sum\limits_{i,j = 1}^n {\left( {a_{i j} \left( x \right)u_{x_i } } \right)_{x_j } + } \sum\limits_{i = 1}^n {b_i \left( x \right)u_{x_i } - } \sum\limits_{i = 1}^n {\left( {c_i \left( x \right)u} \right)_{x_i } + d\left( x \right)u = f\left( x \right) - divF\left( x \right), x \in Q,} \hfill \\ \left. u \right|_{\partial Q} = u_0 \in L_2 \left( {\partial Q} \right) \hfill \\ \end{gathered} $ \begin{gathered} - \sum\limits_{i,j = 1}^n {\left( {a_{i j} \left( x \right)u_{x_i } } \right)_{x_j } + } \sum\limits_{i = 1}^n {b_i \left( x \right)u_{x_i } - } \sum\limits_{i = 1}^n {\left( {c_i \left( x \right)u} \right)_{x_i } + d\left( x \right)u = f\left( x \right) - divF\left( x \right), x \in Q,} \hfill \\ \left. u \right|_{\partial Q} = u_0 \in L_2 \left( {\partial Q} \right) \hfill \\ \end{gathered}   相似文献   

5.
Sunto Si studia il problema della generazione di semigruppi analitici, nella topologia hölderiana, per un operatore ellittico del tipo con dati al bordo di Dirichlet e supponendo i coefficienti Aij continui in .

This work is partially supported by the Research Funds of the Ministero della Pubblica Istruzione.  相似文献   

6.
Exact solutions are obtained for the first time for the half-space boundary-value problem for the vector model kinetic equations
0, \mathop {\lim }\limits_{x \to + 0} \Psi (x,\mu ) = {\rm A}, \mu< 0, \hfill \\ \end{gathered}$$ " align="middle" vspace="20%" border="0">  相似文献   

7.
The exact solution of number of problems in quantum mechanics has been given in terms of Appell’s functionF 2; in an extension of this work I have given here a summation formula, which is as follows:
$$\begin{gathered} \sum\limits_{n = 0}^m {F_2 (a,} - n, - n;1;x,y) \hfill \\ = \frac{{(m + 1)(x - y)^{ - 1} }}{a}[F_2 (a - 1, - m, - m - 1;1,1;x,y) - \rightleftharpoons ] \hfill \\ \end{gathered} $$  相似文献   

8.
Assume that the coefficients of the series $$\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i = 1}^m \sin k_i x_i $$ satisfy the following conditions: a) ak → 0 for k1 + k2 + ...+km →∞, b) \(\delta _{B,G}^M (a) = \mathop {\mathop \sum \limits_{k_i = 1}^\infty }\limits_{i \in B} \mathop {\mathop \sum \limits_{k_j = 2}^\infty }\limits_{j \in G} \mathop {\mathop \sum \limits_{k_v = 0}^\infty }\limits_{v \in M\backslash (B \cup G)} \mathop \Pi \limits_{i \in B} \frac{1}{{k_i }}|\mathop \sum \limits_{I_j = 1}^{[k_j /2]} (\nabla _{l_G }^G (\Delta _1^{M\backslash B} a_k ))\mathop \Pi \limits_{j \in G} l_j^{ - 1} |< \infty ,\) for ∨B?M, ∨G?M,BG, where M={1,2, ...,m}, $$\begin{gathered} \,\,\,\,\,\,\,\,\,\,\,\,\Delta _1^j a_k = a_k - a_{k_{M\backslash \{ j\} } ,k_{j + 1} } ,\Delta _1^B a_k = \Delta _1^{B\backslash \{ j\} } (\Delta _1^j a_k ), \hfill \\ \Delta _{l_j }^j a_k = a_{k_{M\backslash \{ j\} } ,k_j - l_j } - a_{k_{M\backslash \{ j\} } ,k_j + l_j } ,\nabla _{l_G }^G a_k = \nabla _{l_{G\backslash \{ j\} } }^{G\backslash \{ j\} } (\nabla _{l_j }^j a_k ). \hfill \\ \end{gathered} $$ Then for all n∈Nm the following asymptotic equation is valid: $$\mathop \smallint \limits_{{\rm T}_{\pi /(2n + 1)}^m } |\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i \in M} \sin k_i x_i |dx = \mathop \sum \limits_{k = 1}^n \left| {a_k } \right|\mathop \Pi \limits_{i \in M} k^{ - 1} + O(\mathop {\mathop \sum \limits_{B,{\mathbf{ }}G \subset M} }\limits_{B \ne M} \delta _{B,G}^M (a)).$$ Here \(T_{\pi /(2n + 1)}^m = \left\{ {x = (x1,x2,...,xm):\pi /(2n + 1) \leqq xi \leqq \pi ;i = \overline {1,m} } \right\}\) . In the one-dimensional case such an equation was proved by S. A. Teljakovskii.  相似文献   

9.
The initial boundary value problem
$ {*{20}{c}} {\rho {u_{tt}} - {{\left( {\Gamma {u_x}} \right)}_x} + A{u_x} + Bu = 0,} \hfill & {x > 0,\quad 0 < t < T,} \hfill \\ {u\left| {_{t = 0}} \right. = {u_t}\left| {_{t = 0}} \right. = 0,} \hfill & {x \geq 0,} \hfill \\ {u\left| {_{x = 0}} \right. = f,} \hfill & {0 \leq t \leq T,} \hfill \\ $ \begin{array}{*{20}{c}} {\rho {u_{tt}} - {{\left( {\Gamma {u_x}} \right)}_x} + A{u_x} + Bu = 0,} \hfill & {x > 0,\quad 0 < t < T,} \hfill \\ {u\left| {_{t = 0}} \right. = {u_t}\left| {_{t = 0}} \right. = 0,} \hfill & {x \geq 0,} \hfill \\ {u\left| {_{x = 0}} \right. = f,} \hfill & {0 \leq t \leq T,} \hfill \\ \end{array}  相似文献   

10.
We study nonnegative solutions of the initial value problem for a weakly coupled system
  相似文献   

11.
We obtain sufficient conditions for the nontrivial solvability of systems of the form $$ \phi _i = b_i + \lambda _i \sum\limits_{j = 0}^\infty {a_{i - j} \phi _j ,i \in \mathbb{Z}_ + \underline{\underline {def}} \{ 0,1,2...,n,...\} ,} $$ and of the corresponding homogeneous systems. It is assumed that the sequences b = (b 0, b 1, b 2, …) and λ = (λ 0, λ 1, λ 2, …) and the Toeplitz matrix A = (a i?j ) satisfy the conditions $$ \begin{gathered} a_j \geqslant 0,j \in \mathbb{Z},\sum\limits_{j = - \infty }^\infty {a_j = 1,} \sum\limits_{j = - \infty }^\infty {|j|a_j < \infty ,\sum\limits_{j = - \infty }^\infty {ja_j < 0,} } \hfill \\ b_j \geqslant 0,j \in \mathbb{Z},\sum\limits_{j = 0}^\infty {b_j = \infty ,} 1 \leqslant \lambda _i \leqslant \left( {\sum\limits_{j = - \infty }^i {a_j } } \right)^{ - 1} ,i \in \mathbb{Z}_ + . \hfill \\ \end{gathered} $$ . Under these conditions, we construct bounded solutions of homogeneous and inhomogeneous systems of the form indicated above.  相似文献   

12.
The paper analyses the convergence of sequences of control polygons produced by a binary subdivision scheme of the form
  相似文献   

13.
An algorithm for constructing the operator OMn({kx}; x, y) with the properties
n, \hfill \\ \frac{{\partial ^n O_{Mn} (\{ \varphi _{ks} \} ;x,y)}}{{\partial v_a^p }}|_{\Gamma _a } = \varphi _{ap} (x,y)|_{\Gamma _Q '} q = \overline {1, M} ; p = \overline {0, n,} \hfill \\ \end{gathered} $$ " align="middle" vspace="20%" border="0">  相似文献   

14.
Let L denote the space of measurable 1-periodic essentially bounded functionsf(x) with ∥f∥=vrai sup ¦f(x)¦,S k (f, x) thek-th partial sum of the Walsh-Fourier series off(x),L k thek-th Lebesgue constant. The following theorem is proved. Theorem. Letλ={λ K } be a sequence of nonnegative numbers, $$\left\| \lambda \right\|_1 = \mathop \sum \limits_{k = 1}^\infty \lambda _k< \infty ,\left\| \lambda \right\|_2 = (\mathop \sum \limits_{k = 1}^\infty \lambda _k^2 )^{1/2} ,m = log[(\left\| \lambda \right\|_1 /\left\| \lambda \right\|_2 )]$$ .Then for an arbitrary function f∈L the following inequalities hold true $$\begin{gathered} \left\| {\mathop \sum \limits_{k = 1}^\infty \lambda _k \left| {S_k (f,x)} \right|} \right\| \leqq \mathop \sum \limits_{k = 1}^\infty \lambda _k (L_{[k2 - 2m]} + c)\left\| f \right\|, \hfill \\ \hfill \\ \mathop \sum \limits_{k = 1}^\infty \lambda _k \left\| {S_k (f)} \right\| \leqq \mathop \sum \limits_{k = 1}^\infty \lambda _k (L_{[k2 - m]} + c)\left\| f \right\| \hfill \\ \end{gathered} $$ , where[y] denotes integral part of a number y>0 and c is an absolute constant. A corollary of the above theorem is that for each functionfεL the Lebesgue estimate can be refined for a certain sequence of indices, while the growth order of Lebesgue constants along that sequence can be arbitrarily close to the logarithmic one. “In the mean”, however, the Lebesgue estimate is exact. A further corollary deals with strong summability.  相似文献   

15.
Let
  相似文献   

16.
Two results on composed functions are proven. First we give conditions on and so that the mean behaves like , if , including the examples
1$$ " align="middle" border="0"> , not an integer for . Secondly we find conditions on the real positive numbers , such that are almost periodic and we compute their mean values and spectra.  相似文献   

17.
We consider the general differential-functional equations
  相似文献   

18.
Consider a functionf satisfying the condition (1) $$\left| x \right|^\alpha f(x) \in L( - \pi ,\pi ),\alpha > 0,$$ , and define the positive integerm by the inequalitiesm ?1<α≦m. The trigonometric series Σ n=1 (a n cosnx+-b n sinnx) with coefficients $$\begin{gathered} a_n = \frac{1}{\pi }\int\limits_{ - \pi }^\pi {f(t)\left( {\cos nt - \sum\limits_{j = 0}^{[(m - 1)/2]} {\frac{{( - 1)^j (nt)^{2j} }}{{(2j)!}}} } \right)dt,} \hfill \\ b_n = \frac{1}{\pi }\int\limits_{ - \pi }^\pi {f(t)\left( {\sin nt - \sum\limits_{j = 1}^{[m/2]} {\frac{{( - 1)^{j + 1} (nt)^{2j - 1} }}{{(2j - 1)!}}} } \right)dt} \hfill \\ \end{gathered} $$ is then called the generalized Fourier series ofmth order off. The following result is proved. Let the 2π-periodic functionf satisfy condition (1) and letт ?1 < α≦m. Then the generalized Fourier series ofmth order off is summable almost everywhere tof(x) by the (C, α)-method. For an arbitrary α∈(0, 1) condition (1) is sharp.  相似文献   

19.
Based on the coincidence degree theory of Mawhin, we get a new general existence result for the following higher-order multi-point boundary value problem at resonance
$\begin{gathered} x^{(n)} (t) = f(t,x(t),x'(t),...,x^{(n - 1)} (t)),t \in (0,1), \hfill \\ x(0) = \sum\limits_{i = 1}^m {a_i x(\xi _i ),x'(0) = ... = x^{(n - 2)} (0) = 0,x^{(n - 1)} (1) = } \sum\limits_{j = 1}^l {\beta _j x^{(n - 1)} (\eta _j )} , \hfill \\ \end{gathered} $\begin{gathered} x^{(n)} (t) = f(t,x(t),x'(t),...,x^{(n - 1)} (t)),t \in (0,1), \hfill \\ x(0) = \sum\limits_{i = 1}^m {a_i x(\xi _i ),x'(0) = ... = x^{(n - 2)} (0) = 0,x^{(n - 1)} (1) = } \sum\limits_{j = 1}^l {\beta _j x^{(n - 1)} (\eta _j )} , \hfill \\ \end{gathered}   相似文献   

20.
LetG be a locally compact group and (t)t 0 a continuous convolution semigroup of probability measures onG. We show that an operatorN is the infinitesimal generator of (t)t 0 iffN is defined at least on the spaceC 2(G) of twice right differentiable functions and if
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号