首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A kernel of a digraphD is a set of vertices which is both independent and absorbant. In 1983, C. Berge and P. Duchet conjectured that an undirected graphG is perfect if and only if the following condition is fulfilled: ifD is an orientation ofG (where pairs of opposite arcs are allowed) and if every clique ofD has a kernel thenD has a kernel. We prove here the conjecture for the complements of strongly perfect graphs and establish that a minimal counterexample to the conjecture is not a complete join of an independent set with another graph.  相似文献   

2.
Colorings and orientations of graphs   总被引:10,自引:0,他引:10  
N. Alon  M. Tarsi 《Combinatorica》1992,12(2):125-134
Bounds for the chromatic number and for some related parameters of a graph are obtained by applying algebraic techniques. In particular, the following result is proved: IfG is a directed graph with maximum outdegreed, and if the number of Eulerian subgraphs ofG with an even number of edges differs from the number of Eulerian subgraphs with an odd number of edges then for any assignment of a setS(v) ofd+1 colors for each vertexv ofG there is a legal vertex-coloring ofG assigning to each vertexv a color fromS(v).Research supported in part by a United States-Israel BSF Grant and by a Bergmann Memorial Grant.  相似文献   

3.
A graph israndomly matchable if every matching of the graph is contained in a perfect matching. We generalize this notion and say that a graphG israndomly H-coverable if every set of independent subgraphs, each isomorphic toH, that does not cover the vertices ofG can be extended to a larger set of independent copies ofH. Various problems are considered for the situation whereH is a path. In particular, we characterize the graphs that are randomlyP 3 -coverable.  相似文献   

4.
We say that a graph G is k-Pfaffian if the generating function of its perfect matchings can be expressed as a linear combination of Pfaffians of k matrices corresponding to orientations of G. We prove that 3-Pfaffian graphs are 1-Pfaffian, 5-Pfaffian graphs are 4-Pfaffian and that a graph is 4-Pfaffian if and only if it can be drawn on the torus (possibly with crossings) so that every perfect matching intersects itself an even number of times. We state conjectures and prove partial results for k>5. The author was supported in part by NSF under Grant No. DMS-0200595 and DMS-0701033.  相似文献   

5.
A topology on the vertex set of a graphG iscompatible with the graph if every induced subgraph ofG is connected if and only if its vertex set is topologically connected. In the case of locally finite graphs with a finite number of components, it was shown in [11] that a compatible topology exists if and only if the graph is a comparability graph and that all such topologies are Alexandroff. The main results of Section 1 extend these results to a much wider class of graphs. In Section 2, we obtain sufficient conditions on a graph under which all the compatible topologies are Alexandroff and in the case of bipartite graphs we show that this condition is also necessary.  相似文献   

6.
Very Asymmetric Marking Games   总被引:1,自引:0,他引:1  
We investigate a competitive version of the coloring number of a graph G = (V, E). For a fixed linear ordering L of V let s (L) be one more than the maximum outdegree of G when G is oriented so that xy if x < L y. The coloring number of G is the minimum of s (L) over all such orderings. The (a, b)-marking game is played on a graph G = (V, E) as follows. At the start all vertices are unmarked. The players, Alice and Bob, take turns playing. A play consists of Alice marking a unmarked vertices or Bob marking b unmarked vertices. The game ends when there are no remaining unmarked vertices. Together the players create a linear ordering L of V defined by x < y if x is marked before y. The score of the game is s (L). The (a, b)-game coloring number of G is the minimum score that Alice can obtain regardless of Bob’s strategy. The usual (1, 1)-marking game is well studied and there are many interesting results. Our main result is that if G has an orientation with maximum outdegree k then the (k, 1)-game coloring number of G is at most 2k + 2. This extends a fundamental result on the (1, 1)-game coloring number of trees. We also construct examples to show that this bound is tight for many classes of graphs. Finally we prove bounds on the (a, 1)-game coloring number when a < k.  相似文献   

7.
A (finite or infinite) graph G is constructible if there exists a well‐ordering ≤ of its vertices such that for every vertex x which is not the smallest element, there is a vertex y < x which is adjacent to x and to every neighbor z of x with z < x. Particular constructible graphs are Helly graphs and connected bridged graphs. In this paper we study a new class of constructible graphs, the class of locally Helly graphs. A graph G is locally Helly if, for every pair (x,y) of vertices of G whose distance is d2, there exists a vertex whose distance to x is d ? 1 and which is adjacent to y and to all neighbors of y whose distance to x is at most d. Helly graphs are locally Helly, and the converse holds for finite graphs. Among different properties we prove that a locally Helly graph is strongly dismantable, hence cop‐win, if and only if it contains no isometric rays. We show that a locally Helly graph G is finitely Helly, that is, every finite family of pairwise non‐disjoint balls of G has a non‐empty intersection. We give a sufficient condition by forbidden subgraphs so that the three concepts of Helly graphs, of locally Helly graphs and of finitely Helly graphs are equivalent. Finally, generalizing different results, in particular those of Bandelt and Chepoi 1 about Helly graphs and bridged graphs, we prove that the Helly number h(G) of the geodesic convexity in a constructible graph G is equal to its clique number ω(G), provided that ω(G) is finite. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 280–298, 2003  相似文献   

8.
LetG be an (r+2)-connected graph in which every vertex has degree at leastd and which has at least 2d-r vertices. Then, for any pathQ of lengthr and vertexy not onQ, there is a cycle of length at least 2d-r containing bothQ andy.  相似文献   

9.
 A graph G is called preperfect if each induced subgraph G G of order at least 2 has two vertices x, y such that either all maximum cliques of G containing x contain y, or all maximum independent sets of G containing y contain x, too. Giving a partial answer to a problem of Hammer and Maffray [Combinatorica 13 (1993), 199–208], we describe new classes of minimally non-preperfect graphs, and prove the following characterizations: (i) A graph of maximum degree 4 is minimally non-preperfect if and only if it is an odd cycle of length at least 5, or the complement of a cycle of length 7, or the line graph of a 3-regular 3-connected bipartite graph. (ii) If a graph G is not an odd cycle and has no isolated vertices, then its line graph is minimally non-preperfect if and only if G is bipartite, 3-edge-connected, regular of degree d for some d≥3, and contains no 3-edge-connected d -regular subgraph for any 3≤d <d. Received: March 4, 1998 Final version received: August 14, 1999  相似文献   

10.
Acycle double cover of a graph,G, is a collection of cycles,C, such that every edge ofG lies in precisely two cycles ofC. TheSmall Cycle Double Cover Conjecture, proposed by J. A. Bondy, asserts that every simple bridgeless graph onn vertices has a cycle double cover with at mostn–1 cycles, and is a strengthening of the well-knownCycle Double Cover Conjecture. In this paper, we prove Bondy's conjecture for 4-connected planar graphs.  相似文献   

11.
We generalize the concept of perfect graphs in terms of additivity of a functional called graph entropy. The latter is an information theoretic functional on a graphG with a probability distributionP on its vertex set. For any fixedP it is sub-additive with respect to graph union. The entropy of the complete graph equals the sum of those ofG and its complement G iffG is perfect. We generalize this recent result to characterize all the cases when the sub-additivity of graph entropy holds with equality.The research of the authors is partially supported by the Hungarian National Foundation for Scientific Research (OTKA), grant No. 1806 resp. No. 1812.  相似文献   

12.
A graph G of order at least 2n+2 is said to be n‐extendable if G has a perfect matching and every set of n independent edges extends to a perfect matching in G. We prove that every pair of nonadjacent vertices x and y in a connected n‐extendable graph of order p satisfy degG x+degG yp ? n ? 1, then either G is hamiltonian or G is isomorphic to one of two exceptional graphs. © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 75–82, 2002  相似文献   

13.
A simple graph G(X, E) is factor-critical if the induced subgraph 〈Xx〉 admits a perfect matching for every vertex x of G. It is equimatchable if every maximal matching of G is maximum. The equimatchable non-factor-critical graphs have been studied by Lesk, Plummer, and Pulleyblank. In this paper, we study the equimatchable factor-critical graphs; in particular we show that if such a graph is two-connected, it is hamiltonian.  相似文献   

14.
A conjecture of Toft [17] asserts that any 4-critical graph (or equivalently, every 4-chromatic graph) contains a fully odd subdivision ofK 4. We show that if a graphG has a degree three nodev such thatG-v is 3-colourable, then eitherG is 3-colourable or it contains a fully oddK 4. This resolves Toft's conjecture in the special case where a 4-critical graph has a degree three node, which is in turn used to prove the conjecture for line-graphs. The proof is constructive and yields a polynomial algorithm which given a 3-degenerate graph either finds a 3-colouring or exhibits a subgraph that is a fully odd subdivision ofK 4. (A graph is 3-degenerate if every subgraph has some node of degree at most three.)  相似文献   

15.
Akira Saito 《Combinatorica》1996,16(3):433-437
A graphG is said to bek-path-connected if every pair of distinct vertices inG are joined by a path of length at leastk. We prove that if max{deg G x , deg G y }k for every pair of verticesx,y withd G (x,y)=2 in a 2-connected graphG, whered G (x,y) is the distance betweenx andy inG, thenG isk-path-connected.  相似文献   

16.
Recently much attention has been focused on the theory of quasi-random graph and hypergraph properties. The class of quasi-random graphs is defined by certain equivalent graph properties possessed by random graphs. We shall investigate propertiesP which do not imply quasi-randomnes for sequences (G n ) of graphs on their own, but do imply if they hold not only for the whole graphG n but also for every sufficiently large subgraph ofG n . Here the properties are strongly connected to countingnot necessarily induced subgraphs of a given type, while in a subsequent paper we shall investigate the properties connected with counting induced subgraphs.Dedicated to the memory of Paul ErdsResearch supported by OTKA N1909.  相似文献   

17.
Let 𝒫 be a graph property. A graph G is said to be locally 𝒫 (closed locally 𝒫) if the subgraph induced by the open neighbourhood (closed neighbourhood, respectively) of every vertex in G has property 𝒫. The clustering coefficient of a vertex is the proportion of pairs of its neighbours that are themselves neighbours. The minimum clustering coefficient of G is the smallest clustering coefficient among all vertices of G. Let H be a subgraph of a graph G and let S ? V (H). We say that H is a strongly induced subgraph of G with attachment set S, if H is an induced subgraph of G and the vertices of V (H) ? S are not incident with edges that are not in H. A graph G is fully cycle extendable if every vertex of G lies in a triangle and for every nonhamiltonian cycle C of G, there is a cycle of length |V (C)|?+?1 that contains the vertices of C. A complete characterization, of those locally connected graphs with minimum clustering coefficient 1/2 and maximum degree at most 6 that are fully cycle extendable, is given in terms of forbidden strongly induced subgraphs (with specified attachment sets). Moreover, it is shown that all locally connected graphs with Δ?≤?6 and sufficiently large minimum clustering coefficient are weakly pancylic, thereby proving Ryj´ǎcek’s conjecture for this class of graphs.  相似文献   

18.
Let be any fixed graph. For a graph G we define to be the maximum size of a set of pairwise edge-disjoint copies of in G. We say a function from the set of copies of in G to [0, 1] is a fractional -packing of G if for every edge e of G. Then is defined to be the maximum value of over all fractional -packings of G. We show that for all graphs G. Received July 27, 1998 / Revised December 3, 1999  相似文献   

19.
Diperfect graphs     
Gallai and Milgram have shown that the vertices of a directed graph, with stability number α(G), can be covered by exactly α(G) disjoint paths. However, the various proofs of this result do not imply the existence of a maximum stable setS and of a partition of the vertex-set into paths μ1, μ2, ..., μk such tht |μiS|=1 for alli. Later, Gallai proved that in a directed graph, the maximum number of vertices in a path is at least equal to the chromatic number; here again, we do not know if there exists an optimal coloring (S 1,S 2, ...,S k) and a path μ such that |μ ∩S i|=1 for alli. In this paper we show that many directed graphs, like the perfect graphs, have stronger properties: for every maximal stable setS there exists a partition of the vertex set into paths which meet the stable set in only one point. Also: for every optimal coloring there exists a path which meets each color class in only one point. This suggests several conjecties similar to the perfect graph conjecture. Dedicated to Tibor Gallai on his seventieth birthday  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号