首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 371 毫秒
1.
2.
The codewords of weight 4 of every extended perfect binary code that contains the all-zero vector are known to form a Steiner quadruple system. We propose a modification of the Lindner construction for the Steiner quadruple system of order N = 2 r which can be described by special switchings from the Hamming Steiner quadruple system. We prove that each of these Steiner quadruple systems is embedded into some extended perfect binary code constructed by the method of switching of ijkl-components from the binary extended Hamming code. We give the lower bound for the number of different Steiner quadruple systems of order N with rank at most N ? logN + 1 which are embedded into extended perfect codes of length N.  相似文献   

3.
Linear equivalence between perfect codes is defined. This definition gives the concept of general perfect 1-error correcting binary codes. These are defined as 1-error correcting perfect binary codes, with the difference that the set of errors is not the set of weight one words, instead any set with cardinality n and full rank is allowed. The side class structure defines the restrictions on the subspace of any general 1-error correcting perfect binary code. Every linear equivalence class will contain all codes with the same length, rank and dimension of kernel and all codes in the linear equivalence class will have isomorphic side class structures.  相似文献   

4.
Olof Heden 《Discrete Mathematics》2006,306(16):1975-1980
Any full rank perfect 1-error correcting binary code of length n=2k-1 and with a kernel of dimension n-log(n+1)-m, where m is sufficiently large, may be used to construct a full rank perfect 1-error correcting binary code of length 2m-1 and with a kernel of dimension n-log(n+1)-k. Especially we may construct full rank perfect 1-error correcting binary codes of length n=2m-1 and with a kernel of dimension n-log(n+1)-4 for m=6,7,…,10.This result extends known results on the possibilities for the size of a kernel of a full rank perfect code.  相似文献   

5.
The minimum size of a binary covering code of length n and covering radius r is denoted by K(n,r), and codes of this length are called optimal. For j > 0 and n = 2j, it is known that K(n,1) = 2 · K(n?1,1) = 2n ? j. Say that two binary words of length n form a duo if the Hamming distance between them is 1 or 2. In this paper, it is shown that each optimal binary covering code of length n = 2j, j > 0, and covering radius 1 is the union of duos in just one way, and that the closed neighborhoods of the duos form a tiling of the set of binary words of length n. Methods of constructing such optimal codes from optimal covering codes of length n ? 1 (that is, perfect single‐error‐correcting codes) are discussed. The paper ends with the construction of an optimal covering code of length 16 that does not contain an extension of any optimal covering code of length 15. © 2005 Wiley Periodicals, Inc. J Combin Designs  相似文献   

6.
All nonequivalent perfect binary codes of length 15 and rank 15 are constructed that are obtained from the Hamming code H 15 by translating its disjoint components. Also, the main invariants of this class of codes are determined such as the ranks, dimensions of kernels, and orders of automorphism groups.  相似文献   

7.
《Journal of Complexity》2004,20(2-3):372-403
We look at convolutional codes with maximum possible code length for prescribed redundancy, conditioned on constraints on the free distance and on the bit-oriented trellis state complexity. Rate (n−1)/n codes have been studied to some extent in the literature, but more general rates have not been studied much. In this work we consider convolutional codes of rate (nr)/n, r⩾1. Explicit construction techniques for free distance dfree=3 and 4 codes are described. For codes with r=2, an efficient exhaustive search algorithm is outlined. For the more general case with r⩾2, a heuristic approach is suggested. Several new codes were found for r=1 and in particular for r=2 and 3. Compared to previously known codes of similar free distance and complexity constraints, the new codes have either strictly higher rate, or the same rate but smaller low distance multiplicities.  相似文献   

8.
We study properties of binary codes with parameters close to the parameters of 1-perfect codes. An arbitrary binary (n?=?2 m ? 3, 2 n-m-1, 4) code C, i.e., a code with parameters of a triply-shortened extended Hamming code, is a cell of an equitable partition of the n-cube into six cells. An arbitrary binary (n?=?2 m ? 4, 2 n-m , 3) code D, i.e., a code with parameters of a triply-shortened Hamming code, is a cell of an equitable family (but not a partition) with six cells. As a corollary, the codes C and D are completely semiregular; i.e., the weight distribution of such codes depends only on the minimal and maximal codeword weights and the code parameters. Moreover, if D is self-complementary, then it is completely regular. As an intermediate result, we prove, in terms of distance distributions, a general criterion for a partition of the vertices of a graph (from rather general class of graphs, including the distance-regular graphs) to be equitable.  相似文献   

9.
Coding theoretic and complexity theoretic considerations naturally lead to the question of generating symmetric, sparse, redundant linear systems. This paper provides a new way of construction with better parameters and new lower bounds.Low Density Parity Check (LDPC) codes are linear codes defined by short constraints (a property essential for local testing of a code). Some of the best (theoretically and practically) used codes are LDPC. Symmetric codes are those in which all coordinates “look the same,” namely there is some transitive group acting on the coordinates which preserves the code. Some of the most commonly used locally testable codes (especially in PCPs and other proof systems), including all “low-degree” codes, are symmetric. Requiring that a symmetric binary code of length n has large (linear or near-linear) distance seems to suggest a “con ict” between 1/rate and density (constraint length). In known constructions, if one is constant, then the other is almost the worst possible - n/poly(logn).Our main positive result simultaneously achieves symmetric low density, constant rate codes generated by a single constraint. We present an explicit construction of a symmetric and transitive binary code of length n, near-linear distance n/(log logn)2, of constant rate and with constraints of length (logn)4. The construction is in the spirit of Tanner codes, namely the codewords are indexed by the edges of a sparse regular expander graph. The main novelty is in our construction of a transitive (non Abelian!) group acting on these edges which preserves the code. Our construction is one instantiation of a framework we call Cayley Codes developed here, that may be viewed as extending zig-zag product to symmetric codes.Our main negative result is that the parameters obtained above cannot be significantly improved, as long as the acting group is solvable (like the one we use). More specifically, we show that in constant rate and linear distance codes (aka “good” codes) invariant under solvable groups, the density (length of generating constraints) cannot go down to a constant, and is bounded below by (log(Ω(?)) n)(an Ω(?) iterated logarithm) if the group has a derived series of length ?. This negative result precludes natural local tests with constantly many queries for such solvable “good” codes.  相似文献   

10.
We show for binary Armstrong codes Arm(2, k, n) that asymptotically n/k ≤ 1.224, while such a code is shown to exist whenever n/k ≤ 1.12. We also construct an Arm(2, n ? 2, n) and Arm(2, n ? 3, n) for all admissible n.  相似文献   

11.
A perfect binary code C of length n = 2 k ? 1 is called affine systematic if there exists a k-dimensional subspace of {0, 1} n such that the intersection of C and each coset with respect to this subspace is a singleton; otherwise C is called affine nonsystematic. In this article we construct affine nonsystematic codes.  相似文献   

12.
The minimum size of a binary covering code of length n and covering radius r is denoted by K (n, r) and corresponding codes are called optimal. In this article a classification up to equivalence of all optimal covering codes having either length at most 8 or cardinality at most 4 is completed. Moreover, we prove that K (9, 2) = 16. © 2000 John Wiley & Sons, Inc. J Combin Designs 8: 391–401, 2000  相似文献   

13.
It is shown that a self-orthogonal code over GF(5) which is generated by words of weight 4 has a decomposition into components belonging to three infinite families: dn (n = 4, 5, 6, 7, 8, 10, 12,…), en (n = 6, 8, 10,…) and Fn (n = 6, 8, 10,…). All maximal self-orthogonal (and self-dual) codes of length ? 12 are classified, and a number of interesting codes of greater length are constructed.  相似文献   

14.
A binary self-dual code of length 2k is a (2k, k) binary linear code C with the property that every pair of codewords in C are orthogonal. Two self-dual codes, C 1 and C 2, are equivalent if and only if there is a permutation of the coordinates of C 1 that takes C 1 into C 2. The automorphism group of a binary code C is the set of all permutations of the coordinates of C that takes C into itself.The main topic of this paper is the enumeration of inequivalent binary self-dual codes. We have developed algorithms that will take lists of inequivalent small codes and produce lists of larger codes where each inequivalent code occurs only a few times. We have defined a canonical form for codes that allowed us to eliminate the overenumeration. So we have lists of inequivalent binary self-dual codes of length up to 32. The enumeration of the length 32 codes is new. Our algorithm also finds the size of the automorphism group so that we can compute the number of distinct binary self-dual codes for a specific length. This number can also be found by counting and matches our total.  相似文献   

15.
The original motivation for identifying codes comes from fault diagnosis in multiprocessor systems. Currently, the subject forms a topic of its own with several possible applications, for example, to sensor networks.In this paper, we concentrate on identification in binary Hamming spaces. We give a new lower bound on the cardinality of r-identifying codes when r≥2. Moreover, by a computational method, we show that M1(6)=19. It is also shown, using a non-constructive approach, that there exist asymptotically good (r,≤?)-identifying codes for fixed ?≥2. In order to construct (r,≤?)-identifying codes, we prove that a direct sum of r codes that are (1,≤?)-identifying is an (r,≤?)-identifying code for ?≥2.  相似文献   

16.
We prove that, for every n = 2 k with k ≥ 4, there exist nonequivalent extremely transitive extended perfect codes. A transitive extended perfect code we call extremely transitive if the perfect code obtained from this code by puncturing any coordinate position is not transitive. The classification is given for all extended perfect codes of length 16.  相似文献   

17.
Let K(n,r) denote the minimum cardinality of a binary covering code of length n and covering radius r. Constructions of covering codes give upper bounds on K(n,r). It is here shown how computer searches for covering codes can be sped up by requiring that the code has a given (not necessarily full) automorphism group. Tabu search is used to find orbits of words that lead to a covering. In particular, a code D found which proves K(13,1) 704, a new record. A direct construction of D given, and its full automorphism group is shown to be the general linear group GL(3,3). It is proved that D is a perfect dominating set (each word not in D is covered by exactly one word in D) and is a counterexample to the recent Uniformity Conjecture of Weichsel.  相似文献   

18.
Let n be a positive integer, L a subset of {0, 1,…,n}. We discuss the existence of partitions (or tilings) of the n-dimensional binary vector space Fn into L-spheres. By a L-sphere around an x in Fn we mean {y ? Fn, d(x, y) ? L}, d(x, y) being the Hamming distance betwe en x and y. These tilings are generalizations of perfect error correcting codes. We show that very few such tilings exist (Theorem 2) and characterize them all for any L ? {0, 1,…,[12n]}.  相似文献   

19.
J. Borges 《Discrete Mathematics》2008,308(16):3508-3525
Binary non-antipodal completely regular codes are characterized. Using a result on nonexistence of nontrivial binary perfect codes, it is concluded that there are no unknown nontrivial non-antipodal completely regular binary codes with minimum distance d?3. The only such codes are halves and punctured halves of known binary perfect codes. Thus, new such codes with covering radius ρ=6 and 7 are obtained. In particular, a half of the binary Golay [23,12,7]-code is a new binary completely regular code with minimum distance d=8 and covering radius ρ=7. The punctured half of the Golay code is a new completely regular code with minimum distance d=7 and covering radius ρ=6. The new code with d=8 disproves the known conjecture of Neumaier, that the extended binary Golay [24,12,8]-code is the only binary completely regular code with d?8. Halves of binary perfect codes with Hamming parameters also provide an infinite family of binary completely regular codes with d=4 and ρ=3. Puncturing of these codes also provide an infinite family of binary completely regular codes with d=3 and ρ=2. Both these families of codes are well known, since they are uniformly packed in the narrow sense, or extended such codes. Some of these completely regular codes are new completely transitive codes.  相似文献   

20.
The intersections of q-ary perfect codes are under study. We prove that there exist two q-ary perfect codes C 1 and C 2 of length N = qn + 1 such that |C 1 ? C 2| = k · |P i |/p for each k ∈ {0,..., p · K ? 2, p · K}, where q = p r , p is prime, r ≥ 1, $n = \tfrac{{q^{m - 1} - 1}}{{q - 1}}$ , m ≥ 2, |P i | = p nr(q?2)+n , and K = p n(2r?1)?r(m?1). We show also that there exist two q-ary perfect codes of length N which are intersected by p nr(q?3)+n codewords.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号