首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
在有界星形圆形域上定义了一个新的星形映射子族, 它包含了$\alpha$阶星形映射族和$\alpha$阶强星形映射族作为两个特殊子类. 给出了此类星形映射子族的增长定理和掩盖定理. 另外, 还证明了Reinhardt域$\Omega_{n,p_{2},\cdots,p_{n}}$上此星形映射子族在Roper-Suffridge算子 \begin{align*} F(z)=\Big(f(z_{1}),\Big(\frac{f(z_{1})}{z_{1}}\Big)^{\beta_{2}}(f'(z_{1}))^{\gamma_{2}}z_{2},\cdots, \Big(\frac{f(z_{1})}{z_{1}}\Big)^{\beta_{n}}(f'(z_{1}))^{\gamma_{n}}z_{n}\Big)' \end{align*} 作用下保持不变, 其中 $\Omega_{n,p_{2},\cdots,p_{n}}=\{z\in {\mathbb{C}}^{n}:|z_1|^2+|z_2|^{p_2}+\cdots + |z_n|^{p_n}<1\}$, $p_{j}\geq1$, $\beta_{j}\in$ $[0, 1]$, $\gamma_{j}\in[0, \frac{1}{p_{j}}]$满足$\beta_{j}+\gamma_{j}\leq1$, 所取的单值解析分支使得 $\big({\frac{f(z_{1})}{z_{1}}}\big)^{\beta_{j}}\big|_{z_{1}=0}=1$, $(f'(z_{1}))^{\gamma_{j}}\mid_{{z_{1}=0}}=1$, $j=2,\cdots,n$. 这些结果不仅包含了许多已有的结果, 而且得到了新的结论.  相似文献   

2.
刘名生  朱玉灿 《中国科学A辑》2007,37(10):1193-1206
在$\C^n$中的有界完全Reinhardt域$\Omega$上推广的Roper-Suffridge算子$\Phi(f)$定义为 \begin{eqnarray*} \Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)(z)\!=\!\Big(rf\Big(\frac{z_1}{r}\Big), \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_2}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_2}z_2,\ldots, \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_n}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_n}z_n \Big), \end{eqnarray*} 其中 $n\geq2$, $(z_1, z_2,\ldots, z_n)\in \Omega$, $r=r(\Omega)=\sup\{|z_1|: (z_1, z_2,\ldots, z_n)\in \Omega\}, 0\leq \gamma_j\leq 1-\beta_j, 0\leq \beta_j\leq 1$, 这里选取幂函数的单值解析分支, 使得 $(\frac{f(z_1)}{z_1})^{\beta_j}|_{z_1=0}= 1$ 和 $(f’(z_1))^{\gamma_j}|_{z_1=0}=1, j=2,\ldots, n$. 证明了 $\Omega$上的算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 是将 $S^*_\alpha(U)$ 的子集映入$S^*_\alpha\,(\Omega)\,(0\leq \alpha<1)$, 且对于一些合适的常数 $\beta_j, \gamma_j, p_j$, $D_p$上的这个算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 保持$\alpha$阶星形性或保持$\beta$ 型螺形性, 其中 $ D_p=\bigg\{(z_1, z_2,\ldots, z_n)\in \C^n: \he{j=1}{n}|z_j|^{p_j}<1\bigg\},\quad p_j>0, j=1, 2,\ldots, n, $ $U$是复平面$\C$上的单位圆, $S^*_\alpha(\Omega)$ 是 $\Omega$ 上所有正规化$\alpha$阶星形映射所成的类. 也得到: 对于某些合适的常数 $\beta_j, \gamma_j, p_j$ 和 在$\C^n$中的有界完全Reinhardt域$\Omega$上推广的Roper-Suffridge算子$\Phi(f)$定义为 \begin{eqnarray*} \Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)(z)\!=\!\Big(rf\Big(\frac{z_1}{r}\Big), \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_2}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_2}z_2,\ldots, \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_n}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_n}z_n \Big), \end{eqnarray*} 其中 $n\geq2$, $(z_1, z_2,\ldots, z_n)\in \Omega$, $r=r(\Omega)=\sup\{|z_1|: (z_1, z_2,\ldots, z_n)\in \Omega\}, 0\leq \gamma_j\leq 1-\beta_j, 0\leq \beta_j\leq 1$, 这里选取幂函数的单值解析分支, 使得 $(\frac{f(z_1)}{z_1})^{\beta_j}|_{z_1=0}= 1$ 和 $(f’(z_1))^{\gamma_j}|_{z_1=0}=1, j=2,\ldots, n$. 证明了 $\Omega$上的算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 是将 $S^*_\alpha(U)$ 的子集映入$S^*_\alpha\,(\Omega)\,(0\leq \alpha<1)$, 且对于一些合适的常数 $\beta_j, \gamma_j, p_j$, $D_p$上的这个算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 保持$\alpha$阶星形性或保持$\beta$ 型螺形性, 其中 $ D_p=\bigg\{(z_1, z_2,\ldots, z_n)\in \C^n: \he{j=1}{n}|z_j|^{p_j}<1\bigg\},\quad p_j>0, j=1, 2,\ldots, n, $ $U$是复平面$\C$上的单位圆, $S^*_\alpha(\Omega)$ 是 $\Omega$ 上所有正规化$\alpha$阶星形映射所成的类. 也得到: 对于某些合适的常数 $\beta_j, \gamma_j, p_j$ 和 在C~n中的有界完全Reinhardt域Ω上推广的Roper-Suffridge算子Φ(f)定义为Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)(z)=(rf(z_1/r),((rf(z_1/r))/z_1)~(β_2)(f′(z_1/r))~γ_2_(z_2,…,)((rf(z_1/r))/z_1)~(β_n)(f′(z_1/r))~(γ_n)_(z_n),其中n≥2,(z_1,z_2,…,z_n)∈Ω,r=r(Ω)=sup{|z_1|:(z_1,z_2,…,z_n)∈Ω},0≤γ_j≤1-β_j,0≤β_j≤1,这里选取幂函数的单值解析分支,使得((f(z_1))/z_1)~(β_j)|_(z_1=0)=1和(f′(z_1))~(γ_j)|_(z_1=0)=1,j= 2,…,n.证明了Ω上的算子Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)是将S_α~*(U)的子集映入S_α~*(Ω)(0≤α<1),且对于一些合适的常数β_j,γ_j,p_j,D_p上的这个算子Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)保持α阶星形性或保持β型螺形性,其中(?) U是复平面C上的单位圆,S_α~*(Ω)是Ω上所有正规化α阶星形映射所成的类.也得到:对于某些合适的常数β_j,γ_j,p_j和0≤α<1,Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)∈S_α~*(D_p)当且仅当f∈S_α~*(U).  相似文献   

3.
设$W_{\beta}(x)=\exp(-\frac{1}{2}|x|^{\beta})~(\beta > 7/6)$ 为Freud权, Freud正交多项式定义为满足下式$\int_{- \infty}^{\infty}p_{n}(x)p_{m}(x)W_{\beta}^{2}(x)\rd x=\left \{ \begin{array}{ll} 0 & \hspace{3mm} n \neq m , \\ 1 & \hspace{3mm}n = m \end{array} \right.$的  相似文献   

4.
5.
设$\mu$是$[0,1)$上的正规函数, 给出了${\bf C}^{\it n}$中单位球$B$上$\mu$-Bloch空间$\beta_{\mu}$中函数的几种刻画. 证明了下列条件是等价的: (1) $f\in \beta_{\mu}$; \ (2) $f\in H(B)$且函数$\mu(|z|)(1-|z|^{2})^{\gamma-1}R^{\alpha,\gamma}f(z)$ 在$B$上有界; (3) $f\in H(B)$ 且函数${\mu(|z|)(1-|z|^{2})^{M_{1}-1}\frac{\partial^{M_{1}} f}{\partial z^{m}}(z)}$ 在$B$上有界, 其中$|m|=M_{1}$; (4) $f\in H(B)$ 且函数${\mu(|z|)(1-|z|^{2})^{M_{2}-1}R^{(M_{2})}f(z)}$ 在$B$上有界.  相似文献   

6.
本文讨论下面一类分数阶微分方程多点边值问题 $$\align &D^{\alpha}_{0+}u(t) = f(t, u(t),~D^{\alpha-1}_{0+}u(t), D^{\alpha-2}_{0+}u(t), D^{\alpha-3}_{0+}u(t)),~~t\in(0,1), \\&I^{4-\alpha}_{0+}u(0) = 0, ~D^{\alpha-1}_{0+}u(0)=\displaystyle{\sum_{i=1}^{m}}\alpha_{i}D^{\alpha-1}_{0+}u(\xi_{i}),\\&D^{\alpha-2}_{0+}u(1)=\sum\limits_ {j=1}^{n}\beta_{j} D^{\alpha-2}_{0+}u(\eta_{j}),~D^{\alpha-3}_{0+}u(1)-D^{\alpha-3}_{0+}u(0)=D^{\alpha-2}_{0+}u(\frac{1}{2}),\endalign$$其中$3<\alpha \leq 4$是一个实数.通过应用Mawhin重合度理论和构建适当的算子,得到了该边值问题解的存在性结果.  相似文献   

7.
本文讨论了多元线性模型中的一个假设检验问题。假定 $\[{E(Y) = A\theta + B\eta }\]$ $Y的各行独立、正太、同协差阵V$ 现在要检验假设H_0:存在矩阵C使$\theta= C\eta$ 是否成立。首先可将问题化为法式的形式,对法式分两种情况进行讨论: (一)$[V = {\sigma ^2}I,{\sigma ^2}\]$未知,此时可求出 \theta,C,\sigma ^2的最大似然估计(当 H^0成立时)是 $[\left\{ {\begin{array}{*{20}{c}} {\hat \theta = {{({I_p} + \hat C'\hat C)}^{ - 1}}({y_1} + \hat C'{y_2})}\{\hat C = - {{({{T'}_{22}})}^{ - 1}}{{T'}_{12}}}\{{{\hat \sigma }^2} = \frac{1}{{nk}}(\sum\limits_{j = p + 1}^{p + q} {\lambda _j^* + \sum\limits_{j = 1}^k {{d_j})} } } \end{array}} \right.\]$ 其中y_1,y_2是法式 $[E\left( {\begin{array}{*{20}{c}} {{y_1}}\{{y_2}}\{{y_3}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} \theta \\eta \0 \end{array}} \right)\begin{array}{*{20}{c}} p\q\{n - (p + q)} \end{array}\]$ 中的资料阵y_1,y_2,d_1,\cdots,d_k是y^'_3y_3的全部特征根,$[\lambda _1^* \ge \cdots \lambda _{p + q}^*\]$是$[\left( {\begin{array}{*{20}{c}} {{y_1}}\{{y_2}} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{{y'}_1}}&{{{y'}_2}} \end{array}} \right)\]$的全部特征根,相应特征向量依$\lambda^*_i$的大小顺序从左到右排成矩阵T,T的分块子阵是T_ij,即 $[T = \left( {\begin{array}{*{20}{c}} {{T_{11}}}&{{T_{12}}}\{{T_{21}}}&{{T_{22}}} \end{array}} \right)\begin{array}{*{20}{c}} p\q \end{array}\]$ 对H_0的广义似然比检验是 $[\Lambda = \sum\limits_{j = p + 1}^k {{\lambda _j}/\sum\limits_{j = 1}^k {{d_j}} } \]$ $=lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$是$y_1^'y_1+y_2^'y_2$的全部特征根。 (二)一般情形V未知,此时 \theta,C的估计量同前,可求出 $[\hat V = \frac{1}{n}({y_2}^\prime {T_{22}}{T_{22}}^\prime {y_2} + {y_2}^\prime {y_2})\]$ H_0相应的Lawley不变检验是 $[\sum\limits_{j = p + 1}^k {{\beta _j}} \ge {\alpha _1}\]$ 其中 $\beta_1 \geq \beta_2 \geq \cdots \beta_k$是$y'_1y_1+y'_2y_2$的相应于$y'_sy_s$的全部特征根。 有关$\Lambda \$的以及$[\sum\limits_{j = p + 1}^k {{\beta _j}} \]$的极限分布将在另外的文章中讨论。  相似文献   

8.
9.
本文的主要建立非齐性度量测度空间上双线性强奇异积分算子$\widetilde{T}$及交换子$\widetilde{T}_{b_{1},b_{2}}$在广义Morrey空间$M^{u}_{p}(\mu)$上的有界性. 在假设Lebesgue可测函数$u, u_{1}, u_{2}\in\mathbb{W}_{\tau}$, $u_{1}u_{2}=u$,且$\tau\in(0,2)$. 证明了算子$\widetilde{T}$是从乘积空间$M^{u_{1}}_{p_{1}}(\mu)\times M^{u_{2}}_{p_{2}}(\mu)$到空间$M^{u}_{p}(\mu)$有界的, 也是从乘积空间$M^{u_{1}}_{p_{1}}(\mu)\times M^{u_{2}}_{p_{2}}(\mu)$到广义弱Morrey空间$WM^{u}_{p}(\mu)$有界的,其中$\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$及$1相似文献   

10.
研究了与强奇异Calder\'{o}n-Zygmund算子和加权 Lipschitz函数${\rm Lip}_{\beta_0,\omega}$相关的Toeplitz算子$T_b$的sharp极大函数的点态估计,并证明了Toeplitz算子是从 $L^p(\omega)$到$L^q(\omega^{1-q})$上的有界算子.此外, 建立了与强奇异Calder\'{o}n-Zygmund算子和加权 BMO函数${\rm BMO}_{\omega}$相关的Toeplitz算子$T_b$的sharp极大函数的点态估计,并证明了Toeplitz算子是从 $L^p(\mu)$到$L^q(\nu)$上的有界算子.上述结果包含了相应交换子的有界性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号