首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A clique-transversal set D of a graph G is a set of vertices of G such that D meets all cliques of G.The clique-transversal number,denoted by τC(G),is the minimum cardinality of a clique-transversal set in G.In this paper,we first present a lower bound on τC(G) and characterize the extremal graphs achieving the lower bound for a connected(claw,K4)-free 4-regular graph G.Furthermore,we show that for any 2-connected(claw,K4)-free 4-regular graph G of order n,its clique-transversal number equals to [n/3].  相似文献   

2.
A graph is symmetric or 1-regular if its automorphism group is transitive or regular on the arc set of the graph, respectively. We classify the connected pentavalent symmetric graphs of order 2p~3 for each prime p. All those symmetric graphs appear as normal Cayley graphs on some groups of order 2p~3 and their automorphism groups are determined. For p = 3, no connected pentavalent symmetric graphs of order 2p~3 exist. However, for p = 2 or 5, such symmetric graph exists uniquely in each case. For p 7, the connected pentavalent symmetric graphs of order 2p~3 are all regular covers of the dipole Dip5 with covering transposition groups of order p~3, and they consist of seven infinite families; six of them are 1-regular and exist if and only if 5 |(p- 1), while the other one is 1-transitive but not 1-regular and exists if and only if 5 |(p ± 1). In the seven infinite families, each graph is unique for a given order.  相似文献   

3.
For a graph G and two positive integers j and k, an m-L(j, k)-edge-labeling of G is an assignment on the edges to the set {0,..., m}, such that adjacent edges receive labels differing by at least j, and edges which are distance two apart receive labels differing by at least k. The λ′j,k-number of G is the minimum m of an m-L(j, k)-edge-labeling admitted by G.In this article, we study the L(1, 2)-edge-labeling for paths, cycles, complete graphs, complete multipartite graphs, infinite ?-regular trees and wheels.  相似文献   

4.
A cyclic edge-cut of a graph G is an edge set, the removal of which separates two cycles. If G has a cyclic edge-cut, then it is called cyclically separable. We call a cyclically separable graph super cyclically edge-connected, in short, super-λc, if the removal of any minimum cyclic edge-cut results in a component which is a shortest cycle. In [Zhang, Z., Wang, B.: Super cyclically edge-connected transitive graphs. J. Combin. Optim., 22, 549-562 (2011)], it is proved that a connected vertex-transitive graph is super-λc if G has minimum degree at least 4 and girth at least 6, and the authors also presented a class of nonsuper-λc graphs which have degree 4 and girth 5. In this paper, a characterization of k (k≥4)-regular vertex-transitive nonsuper-λc graphs of girth 5 is given. Using this, we classify all k (k≥4)-regular nonsuper-λc Cayley graphs of girth 5, and construct the first infinite family of nonsuper-λc vertex-transitive non-Cayley graphs.  相似文献   

5.
A proper edge-k-coloring of a graph G is a mapping from E(G) to {1, 2,..., k} such that no two adjacent edges receive the same color. A proper edge-k-coloring of G is called neighbor sum distinguishing if for each edge uv ∈ E(G), the sum of colors taken on the edges incident to u is different from the sum of colors taken on the edges incident to v. Let χ_Σ'(G) denote the smallest value k in such a coloring of G. This parameter makes sense for graphs containing no isolated edges(we call such graphs normal). The maximum average degree mad(G) of G is the maximum of the average degrees of its non-empty subgraphs. In this paper, we prove that if G is a normal subcubic graph with mad(G) 5/2,then χ_Σ'(G) ≤ 5. We also prove that if G is a normal subcubic graph with at least two 2-vertices, 6 colors are enough for a neighbor sum distinguishing edge coloring of G, which holds for the list version as well.  相似文献   

6.
Given a simple graph G and a positive integer k, the induced matching k-partition problem asks whether there exists a k-partition (V1,V2,…Vk)of V(G) such that for each i(1≤i≤k),G[Vi] is 1 regular. This paper studies the computational complexity of this problem for graphs with small diameters. The main results are as follows: Induced matching 2-partition problem of graphs with diameter 6 and induced matching 3-partition problem of graphs with diameter 2 are NP- complete;induced matching 2-partition problem of graphs with diameter 2 is polynomially solvable.  相似文献   

7.
A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic chromatic index of G, denoted by χ’a(G), is the least number of colors such that G has an acyclic edge k-coloring. Let G be a graph with maximum degree Δ and girth g(G), and let 1≤r≤2Δ be an integer. In this paper, it is shown that there exists a constant c > 0 such that if g(G)≥cΔ r log(Δ2/r) then χa(G)≤Δ + r + 1, which generalizes the result of Alon et al. in 2001. When G is restricted to series-parallel graphs, it is proved that χ’a(G) = Δ if Δ≥4 and g(G)≥4; or Δ≥3 and g(G)≥5.  相似文献   

8.
《数学季刊》2016,(2):147-154
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) 6= C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K8,n are discussed in this paper. Particularly, the VDIET chromatic number of K8,n are obtained.  相似文献   

9.
Let G be a finite simple graph with adjacency matrix A, and let P(A) be the convex closure of the set of all permutation matrices commuting with A. G is said to be compact if every doubly stochastic matrix which commutes with A is in P(A). In this paper, we characterize 3-regular compact graphs and prove that if G is a connected regular compact graph, G - v is also compact, and give a family of almost regular compact connected graphs.  相似文献   

10.
An acyclic edge coloring of a graph G is a proper edge coloring such that there are no bichromatic cycles.The acyclic edge chromatic number of a graph G is the minimum number k such that there exists an acyclic edge coloring using k colors and is denoted by χ’ a(G).In this paper we prove that χ ’ a(G) ≤(G) + 5 for planar graphs G without adjacent triangles.  相似文献   

11.
PARTITION A GRAPH WITH SMALL DIAMETER INTO TWO INDUCED MATCHINGS   总被引:5,自引:0,他引:5  
§1 IntroductionGraphs considered in this paper are finite and simple.For a graph G,its vertex setandedge set are denoted by V(G) and E(G) ,respectively.If vertices u and v are connected inG,the distance between u and v,denoted by d G(u,v) ,is the length ofa shortest(u,v) -pathin G.The diameter of a connected graph G is the maximum distance between two verticesof G.For X V(G) ,the neighbor set NG(X) of X is defined byNG(X) ={ y∈V(G) \X:there is x∈X such thatxy∈E(G) } .NG({ x} )…  相似文献   

12.
A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G, denoted by a′(G), is the least number of colors in an acyclic edge coloring of G. Alon et al. conjectured that a′(G) ⩽ Δ(G) + 2 for any graphs. For planar graphs G with girth g(G), we prove that a′(G) ⩽ max{2Δ(G) − 2, Δ(G) + 22} if g(G) ⩾ 3, a′(G) ⩽ Δ(G) + 2 if g(G) ⩾ 5, a′(G) ⩽ Δ(G) + 1 if g(G) ⩾ 7, and a′(G) = Δ(G) if g(G) ⩾ 16 and Δ(G) ⩾ 3. For series-parallel graphs G, we have a′(G) ⩽ Δ(G) + 1. This work was supported by National Natural Science Foundation of China (Grant No. 10871119) and Natural Science Foundation of Shandong Province (Grant No. Y2008A20).  相似文献   

13.
On the adjacent-vertex-strongly-distinguishing total coloring of graphs   总被引:6,自引:0,他引:6  
For any vertex u∈V(G), let T_N(U)={u}∪{uv|uv∈E(G), v∈v(G)}∪{v∈v(G)|uv∈E(G)}and let f be a total k-coloring of G. The total-color neighbor of a vertex u of G is the color set C_f(u)={f(x)|x∈TN(U)}. For any two adjacent vertices x and y of V(G)such that C_f(x)≠C_f(y), we refer to f as a k-avsdt-coloring of G("avsdt"is the abbreviation of"adjacent-vertex-strongly- distinguishing total"). The avsdt-coloring number of G, denoted by X_(ast)(G), is the minimal number of colors required for a avsdt-coloring of G. In this paper, the avsdt-coloring numbers on some familiar graphs are studied, such as paths, cycles, complete graphs, complete bipartite graphs and so on. We proveΔ(G) 1≤X_(ast)(G)≤Δ(G) 2 for any tree or unique cycle graph G.  相似文献   

14.
Equitable colorings of Kronecker products of graphs   总被引:1,自引:0,他引:1  
For a positive integer k, a graph G is equitably k-colorable if there is a mapping f:V(G)→{1,2,…,k} such that f(x)≠f(y) whenever xyE(G) and ||f−1(i)|−|f−1(j)||≤1 for 1≤i<jk. The equitable chromatic number of a graph G, denoted by χ=(G), is the minimum k such that G is equitably k-colorable. The equitable chromatic threshold of a graph G, denoted by , is the minimum t such that G is equitably k-colorable for kt. The current paper studies equitable chromatic numbers of Kronecker products of graphs. In particular, we give exact values or upper bounds on χ=(G×H) and when G and H are complete graphs, bipartite graphs, paths or cycles.  相似文献   

15.
A k-edge-weighting w of a graph G is an assignment of an integer weight, w(e) ∈ {1,…,k}, to each edge e. An edge-weighting naturally induces a vertex coloring c by defining c(u) = Σ eu w(e) for every uV (G). A k-edge-weighting of a graph G is vertex-coloring if the induced coloring c is proper, i.e., c(u) ≠ c(v) for any edge uvE(G). When k ≡ 2 (mod 4) and k ⩾ 6, we prove that if G is k-colorable and 2-connected, δ(G) ⩾ k − 1, then G admits a vertex-coloring k-edge-weighting. We also obtain several sufficient conditions for graphs to be vertex-coloring k-edge-weighting.   相似文献   

16.
A proper coloring of the edges of a graph G is called acyclic if there is no 2‐colored cycle in G. The acyclic edge chromatic number of G, denoted by a′(G), is the least number of colors in an acyclic edge coloring of G. For certain graphs G, a′(G) ≥ Δ(G) + 2 where Δ(G) is the maximum degree in G. It is known that a′(G) ≤ 16 Δ(G) for any graph G. We prove that there exists a constant c such that a′(G) ≤ Δ(G) + 2 for any graph G whose girth is at least cΔ(G) log Δ(G), and conjecture that this upper bound for a′(G) holds for all graphs G. We also show that a′(G) ≤ Δ + 2 for almost all Δ‐regular graphs. © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 157–167, 2001  相似文献   

17.
Some results on R 2-edge-connectivity of even regular graphs   总被引:1,自引:0,他引:1  
Let G be a connected k(≥3)-regular graph with girth g. A set S of the edges in G is called an Rredge-cut if G-S is disconnected and comains neither an isolated vertex nor a one-degree vertex. The R2-edge-connectivity of G, denoted by λ^n(G), is the minimum cardinality over all R2-edge-cuts, which is an important measure for fault-tolerance of computer interconnection networks. In this paper, λ^n(G)=g(2k-2) for any 2k-regular connected graph G (≠K5) that is either edge-transitive or vertex-transitive and g≥5 is given.  相似文献   

18.
19.
For a graph G=(V(G),E(G)), a strong edge coloring of G is an edge coloring in which every color class is an induced matching. The strong chromatic index of G, χs(G), is the smallest number of colors in a strong edge coloring of G. The strong chromatic index of the random graph G(n,p) was considered in Discrete Math. 281 (2004) 129, Austral. J. Combin. 10 (1994) 97, Austral. J. Combin. 18 (1998) 219 and Combin. Probab. Comput. 11 (1) (2002) 103. In this paper, we consider χs(G) for a related class of graphs G known as uniform or ε-regular graphs. In particular, we prove that for 0<ε?d<1, all (d,ε)-regular bipartite graphs G=(UV,E) with |U|=|V|?n0(d,ε) satisfy χs(G)?ζ(ε)Δ(G)2, where ζ(ε)→0 as ε→0 (this order of magnitude is easily seen to be best possible). Our main tool in proving this statement is a powerful packing result of Pippenger and Spencer (Combin. Theory Ser. A 51(1) (1989) 24).  相似文献   

20.
Let G be an outerplanar graph with maximum degree △. Let χ(G^2) and A(G) denote the chromatic number of the square and the L(2, 1)-labelling number of G, respectively. In this paper we prove the following results: (1) χ(G^2) = 7 if △= 6; (2) λ(G) ≤ △ +5 if △ ≥ 4, and ),(G)≤ 7 if △ = 3; and (3) there is an outerplanar graph G with △ = 4 such that )λ(G) = 7. These improve some known results on the distance two labelling of outerplanar graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号