首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In this paper, by means of the definition of Borel exceptional value method, another exceptional value of meromorphic function which is a T exceptional value is defined by linking the concept of T direction. And we construct a meromorphic function with zero as Borel exceptional value, but not as T exceptional value; and another meromorphic function with zero as T exceptional value, but not as Borel exceptional value.  相似文献   

2.
In this article, for a transcendental entire function f(z) of finite order which has a finite Borel exceptional value α, we utilize properties of complex difference equations to prove the difference counterpart of Br¨uck's conjecture, that is, if △f(z) = f(z + η)- f(z)and f(z) share one value a(≠α) CM, where η∈ C is a constant such that f(z + η) ≡ f(z),then△f(z)- a/f(z)- a=a/a-α.  相似文献   

3.
Let f be a nonconstant meromorphic function, c ∈ C, and let ■be a meromorphic function. If f(z) and P(z, f(z)) share the sets {a(z),-a(z)},{0} CM almost and share {∞} IM almost, where P(z, f(z)) is defined as(1.1), then f(z) ≡±P(z, f(z)) or f(z)P(z, f(z)) ≡±a~2(z). This extends the results due to Chen and Chen(2013), Liu(2009) and Yi(1987).  相似文献   

4.
In this paper,suppose that a,c∈C{0},cj∈C(j=1,2,···,n) are not all zeros and n≥2,and f (z) is a finite order transcendental entire function with Borel finite exceptional value or with infinitely many multiple zeros,the zero distribution of difference polynomials of f (z+c)-afn(z) and f (z)f (z+c1)···f (z+cn) are investigated.A number of examples are also presented to show that our results are best possible in a certain sense.  相似文献   

5.
章文华 《数学季刊》2006,21(4):577-580
We proved:Let F be a family of meromorphic functions in a domain D and a≠0,b∈C.If f′(z)-a(f(z))~2≠b,f≠0 and the poles of f(z)are of multiplicity>=3 for each f(z)∈F,then F is normal in D.  相似文献   

6.
分担多项式的亚纯函数的进一步结果(英文)   总被引:1,自引:0,他引:1  
仇惠玲 《数学季刊》2011,(3):448-452
In this paper,we use the theory of value distribution and study the uniqueness of meromorphic functions.We will prove the following result:Let f(z)and g(z)be two transcendental meromorphic functions,p(z)a polynomial of degree k,n≥max{11,k+1}a positive integer.If fn(z)f(z)and gn(z)g(z)share p(z)CM,then either f(z)=c1ec p(z)dz, g(z)=c2e ?c p(z)dz ,where c1,c2 and c are three constants satisfying(c1c2) n+1 c2=-1 or f(z)≡tg(z)for a constant t such that tn+1=1.  相似文献   

7.
In this paper, we study the normality criteria of meromorphic functions concerning shared fixed-points, we obtain: Let F be a family of meromorphic functions defined in a domain D. Let n, k ≥ 2 be two positive integers. For every f ∈ F, all of whose zeros have multiplicity at least (nk+2)/(n-1). If f(f(k))nand g(g(k))nshare z in D for each pair of functions f and g, then F is normal.  相似文献   

8.
In this paper, we mainly study zeros and poles of the forward differences Δnf(z), where f(z) is a finite order meromorphic function with two Borel exceptional values.  相似文献   

9.
In this article, for a transcendental entire function f(z) of finite order which has a finite Borel exceptional value a, we utilize properties of complex difference equations to prove the difference counterpart of Bruck's conjecture, that is, if △f(z) = f(z + η) - f(z) and f(z) share one value a (≠α) CM, where η ∈ C is a constant such that f(z +η) ≠ f(z),then
△f(z)-a/f(z)-a=a/a-α.  相似文献   

10.
In this paper, we present the properties on zeros, fixed points, poles, Borel exceptional value of finite order transcendental meromorphic solutions of complex difference equation of Malmquist typewhere n(∈ N) 〉 2, P(f(z)) and Q(f(z)) are relatively prime polynomials in f(z) with rational coefficients a8 (s = 0, 1,…,p) and bt (t = 0, 1,… ,q) such that aoapbq 7≠ O, and also consider the existence and the forms on rational solutions of this type of difference equations. Some examples are also listed to show that the assumptions of theorems, in certain senses, are the best possible.  相似文献   

11.
We define V (α, β) (α < 1 and β > 1), the new subclass of analytic functions with bounded positive real part, \(V\left( {\alpha ,\beta } \right): = \left\{ {f \in A:\alpha < \operatorname{Re} \left\{ {{{\left( {\frac{z}{{f\left( z \right)}}} \right)}^2}f'\left( z \right)} \right\} < \beta } \right\}\), and study some properties of V (α, β). We also study the class U (γ) (γ > 0): \(u\left( \gamma \right): = \left\{ {f \in A:\left| {{{\left( {\frac{z}{{f\left( z \right)}}} \right)}^2}f'\left( z \right)} \right| - 1 < \gamma } \right\}\), where A is the class of normalized functions.  相似文献   

12.
For a polynomial P(z) of degree n having no zeros in |z| < 1, it was recently proved in [9] that
$$\left| {{z^s}{P^{\left( s \right)}}\left( z \right) + \beta \frac{{n\left( {n - 1} \right)...\left( {n - s + 1} \right)}}{{{2^s}}}P\left( z \right)} \right| \leqslant \frac{{n\left( {n - 1} \right)...\left( {n - s + 1} \right)}}{2}\left( {\left| {1 + \frac{\beta }{{{2^s}}}} \right| + \left| {\frac{\beta }{{{2^s}}}} \right|} \right)\mathop {\max }\limits_{\left| z \right| = 1} \left| {P\left( z \right)} \right|$$
for every β ∈ C with |β| ≤ 1, 1 ≤ sn and |z| = 1. In this paper, we obtain the L p mean extension of the above and other related results for the sth derivative of polynomials.
  相似文献   

13.
For the linear positive Korovkin operator \(f\left( x \right) \to {t_n}\left( {f;x} \right) = \frac{1}{\pi }\int_{ - \pi }^\pi {f\left( {x + t} \right)E\left( t \right)dt} \), where E(x) is the Egervary–Szász polynomial and the corresponding interpolation mean \({t_{n,N}}\left( {f;x} \right) = \frac{1}{N}\sum\limits_{k = - N}^{N - 1} {{E_n}\left( {x - \frac{{\pi k}}{N}} \right)f\left( {\frac{{\pi k}}{N}} \right)} \), the Jackson-type inequalities \(\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant \left( {1 + \pi } \right){\omega _f}\left( {\frac{1}{n}} \right),\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant 2{\omega _f}\left( {\frac{\pi }{{n + 1}}} \right)\), where ωf (x) denotes the modulus of continuity, are proved for N > n/2. For ωf (x) ≤ Mx, the inequality \(\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant \frac{{\pi M}}{{n + 1}}\). is established. As a consequence, an elementary derivation of an asymptotically sharp estimate of the Kolmogorov width of a compact set of functions satisfying the Lipschitz condition is obtained.  相似文献   

14.
The Schur-Szegö composition of two polynomials \(f\left( z \right) = \sum\nolimits_{j = 0}^n {{A_j}{z^j}} \) and \(g\left( z \right) = \sum\nolimits_{j = 0}^n {{B_j}{z^j}} \), both of degree n, is defined by \(f * g\left( z \right) = \sum\nolimits_{j = 0}^n {{A_j}{B_j}{{\left( {\begin{array}{*{20}{c}}n \\ j \end{array}} \right)}^{ - 1}}{z^j}} \). In this paper, we estimate the minimum and the maximum of the modulus of f * g(z) on z = 1 and thereby obtain results analogues to Bernstein type inequalities for polynomials.  相似文献   

15.
The paper proves that for any ε > 0 there exists ameasurable set E ? [0, 1] with measure |E| > 1 ? ε such that for each f ∈ L1[0, 1] there is a function \(\tilde f \in {L^1}\left[ {0,1} \right]\) coinciding with f on E whose Fourier-Walsh series converges to \(\tilde f\) in L1[0, 1]-norm, and the sequence \(\left\{ {\left| {{c_k}\left( {\tilde f} \right)} \right|} \right\}_{n = 0}^\infty \) is monotonically decreasing, where \(\left\{ {{c_k}\left( {\tilde f} \right)} \right\}\) is the sequence of Fourier-Walsh coefficients of \(\left\{ {\left| {{c_k}\left( {\tilde f} \right)} \right|} \right\}_{n = 0}^\infty \).  相似文献   

16.
Given gL2(R n ), we consider irregular wavelet for the form\(\left\{ {\lambda ^{\frac{n}{2}} g\left( {\lambda _j x - kb} \right)} \right\}_{j\varepsilon zj\varepsilon z^n } ,where\;\lambda _j \) > 0 and b > 0. Sufficient conditions for the wavelet system to constitute a frame for L2(R n ) are given. For a class of functions gL22(R n ) we prove that certain growth conditions on j } will frames, and that some other types of sequences exclude the frame property. We also give a sufficient condition for a Gabor system\(\left\{ {e^{zrib\left( {j,x} \right)} g\left( {x - \lambda _k } \right)} \right\}_{j\varepsilon z^n ,k\varepsilon z} \)to be a frame.  相似文献   

17.
LetH(α) denote the class of regular functionsf(z) normalized so thatf(0)=0 andf′(0)=1 and satisfying in the unit discE the condition $$\operatorname{Re} \left\{ {(1 - \alpha )f'(z) + \alpha (1 + zf''(z)/f'(z))} \right\} > 0$$ for fixed α. It is known thatH(0) is a particular class NW of close-to-convex univalent functions. The authors show the following results:Theorem 1. Letf(z)H(α). Thenf(z)∈NW if α≤0 andzE.Theorem 2. Letf(z)∈NW. Thenf(z)H(α) in |z|=r<r α where i) \(r_\alpha = (1 + \sqrt {2\alpha } )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}\) , α≥0 and ii) \(r_\alpha = \sqrt {\frac{{1 - \alpha - \sqrt {\alpha (\alpha - 1)} }}{{1 - \alpha }}}\) , α<0. All results are sharp.Theorem 3. Iff(z)=z+a 2 z 2+a 3 z 3+... is inH(α) and if μ is an arbitrary complex number, then $$\left| {1 + \alpha } \right|\left| {a_3 - \mu a_2^2 } \right| \leqslant ({2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3})\max \left[ {1,\left| {1 + 2\alpha - {3 \mathord{\left/ {\vphantom {3 {2\mu }}} \right. \kern-\nulldelimiterspace} {2\mu }}(1 + \alpha )} \right|} \right].$$ .  相似文献   

18.
In this paper, necessary and sufficient conditions are obtained for every bounded solution of
$$\left( * \right)\quad \quad \quad \quad \quad \quad \left[ {y\left( t \right) - p\left( t \right)y\left( {t - \tau } \right)^{\left( n \right)} } \right] + Q\left( t \right)G\left( {y\left( {t - \sigma } \right)} \right) = f\left( t \right),\quad t \geqslant 0,$$
to oscillate or tend to zero as t → ∞ for different ranges of p(t). It is shown, under some stronger conditions, that every solution of (*) oscillates or tends to zero as t → ∞. Our results hold for linear, a class of superlinear and other nonlinear equations and answer a conjecture by Ladas and Sficas, Austral. Math. Soc. Ser. B 27 (1986), 502–511, and generalize some known results.
  相似文献   

19.
In this paper we establish the following estimate:
$$\omega \left( {\left\{ {x \in {\mathbb{R}^n}:\left| {\left[ {b,T} \right]f\left( x \right)} \right| > \lambda } \right\}} \right) \leqslant \frac{{{c_T}}}{{{\varepsilon ^2}}}\int_{{\mathbb{R}^n}} {\Phi \left( {{{\left\| b \right\|}_{BMO}}\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right){M_{L{{\left( {\log L} \right)}^{1 + \varepsilon }}}}} \omega \left( x \right)dx$$
where ω ≥ 0, 0 < ε < 1 and Φ(t) = t(1 + log+(t)). This inequality relies upon the following sharp L p estimate:
$${\left\| {\left[ {b,T} \right]f} \right\|_{{L^p}\left( \omega \right)}} \leqslant {c_T}{\left( {p'} \right)^2}{p^2}{\left( {\frac{{p - 1}}{\delta }} \right)^{\frac{1}{{p'}}}}{\left\| b \right\|_{BMO}}{\left\| f \right\|_{{L^p}\left( {{M_{L{{\left( {{{\log }_L}} \right)}^{2p - 1 + {\delta ^\omega }}}}}} \right)}}$$
where 1 < p < ∞, ω ≥ 0 and 0 < δ < 1. As a consequence we recover the following estimate essentially contained in [18]:
$$\omega \left( {\left\{ {x \in {\mathbb{R}^n}:\left| {\left[ {b,T} \right]f\left( x \right)} \right| > \lambda } \right\}} \right) \leqslant {c_T}{\left[ \omega \right]_{{A_\infty }}}{\left( {1 + {{\log }^ + }{{\left[ \omega \right]}_{{A_\infty }}}} \right)^2}\int_{{\mathbb{R}^n}} {\Phi \left( {{{\left\| b \right\|}_{BMO}}\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right)M} \omega \left( x \right)dx.$$
We also obtain the analogue estimates for symbol-multilinear commutators for a wider class of symbols.
  相似文献   

20.
A Shilla graph is defined as a distance-regular graph of diameter 3 with second eigen-value θ1 equal to a3. For a Shilla graph, let us put a = a3 and b = k/a. It is proved in this paper that a Shilla graph with b2 = c2 and noninteger eigenvalues has the following intersection array:
$$\left\{ {\frac{{{b^2}\left( {b - 1} \right)}}{2},\frac{{\left( {b - 1} \right)\left( {{b^2} - b + 2} \right)}}{2},\frac{{b\left( {b - 1} \right)}}{4};1,\frac{{b\left( {b - 1} \right)}}{4},\frac{{b{{\left( {b - 1} \right)}^2}}}{2}} \right\}$$
If Γ is a Q-polynomial Shilla graph with b2 = c2 and b = 2r, then the graph Γ has intersection array
$$\left\{ {2tr\left( {2r + 1} \right),\left( {2r + 1} \right)\left( {2rt + t + 1} \right),r\left( {r + t} \right);1,r\left( {r + t} \right),t\left( {4{r^2} - 1} \right)} \right\}$$
and, for any vertex u in Γ, the subgraph Γ3(u) is an antipodal distance-regular graph with intersection array
$$\left\{ {t\left( {2r + 1} \right),\left( {2r - 1} \right)\left( {t + 1} \right),1;1,t + 1,t\left( {2r + 1} \right)} \right\}$$
The Shilla graphs with b2 = c2 and b = 4 are also classified in the paper.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号