首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Contraction of an edge e merges its end points into a new single vertex, and each neighbor of one of the end points of e is a neighbor of the new vertex. An edge in a k-connected graph is contractible if its contraction does not result in a graph with lesser connectivity; otherwise the edge is called non-contractible. In this paper, we present results on the structure of contractible edges in k-trees and k-connected partial k-trees. Firstly, we show that an edge e in a k-tree is contractible if and only if e belongs to exactly one (k + 1) clique. We use this characterization to show that the graph formed by contractible edges is a 2-connected graph. We also show that there are at least |V(G)| + k − 2 contractible edges in a k-tree. Secondly, we show that if an edge e in a partial k-tree is contractible then e is contractible in any k-tree which contains the partial k-tree as an edge subgraph. We also construct a class of contraction critical 2k-connected partial 2k-trees.  相似文献   

2.
An edge e of a k-connected graph G is said to be k-contractible (or simply contractible) if the graph obtained from G by contracting e (i.e., deleting e and identifying its ends, finally, replacing each of the resulting pairs of double edges by a single edge) is still k-connected. In 2002, Kawarabayashi proved that for any odd integer k ? 5, if G is a k-connected graph and G contains no subgraph D = K 1 + (K 2K 1,2), then G has a k-contractible edge. In this paper, by generalizing this result, we prove that for any integer t ? 3 and any odd integer k ? 2t + 1, if a k-connected graph G contains neither K 1 + (K 2K 1,t ), nor K 1 + (2K 2K 1,2), then G has a k-contractible edge.  相似文献   

3.
An edge of a k-connected graph is said to be k-contractible if the contraction of the edge results in a k-connected graph. In this paper, we prove that a (K1 + C4)-free minimally k-connected graph has a k-contractible edge, if around each vertex of degree k, there is an edge which is not contained in a triangle. This implies previous two results, one due to Thomassen and the other due to Kawarabayashi.  相似文献   

4.
An edge e of a k-connected graph G is said to be a removable edge if G?e is still k-connected. A k-connected graph G is said to be a quasi (k+1)-connected if G has no nontrivial k-separator. The existence of removable edges of 3-connected and 4-connected graphs and some properties of quasi k-connected graphs have been investigated [D.A. Holton, B. Jackson, A. Saito, N.C. Wormale, Removable edges in 3-connected graphs, J. Graph Theory 14(4) (1990) 465-473; H. Jiang, J. Su, Minimum degree of minimally quasi (k+1)-connected graphs, J. Math. Study 35 (2002) 187-193; T. Politof, A. Satyanarayana, Minors of quasi 4-connected graphs, Discrete Math. 126 (1994) 245-256; T. Politof, A. Satyanarayana, The structure of quasi 4-connected graphs, Discrete Math. 161 (1996) 217-228; J. Su, The number of removable edges in 3-connected graphs, J. Combin. Theory Ser. B 75(1) (1999) 74-87; J. Yin, Removable edges and constructions of 4-connected graphs, J. Systems Sci. Math. Sci. 19(4) (1999) 434-438]. In this paper, we first investigate the relation between quasi connectivity and removable edges. Based on the relation, the existence of removable edges in k-connected graphs (k?5) is investigated. It is proved that a 5-connected graph has no removable edge if and only if it is isomorphic to K6. For a k-connected graph G such that end vertices of any edge of G have at most k-3 common adjacent vertices, it is also proved that G has a removable edge. Consequently, a recursive construction method of 5-connected graphs is established, that is, any 5-connected graph can be obtained from K6 by a number of θ+-operations. We conjecture that, if k is even, a k-connected graph G without removable edge is isomorphic to either Kk+1 or the graph Hk/2+1 obtained from Kk+2 by removing k/2+1 disjoint edges, and, if k is odd, G is isomorphic to Kk+1.  相似文献   

5.
Vertices of Degree 5 in a Contraction Critically 5-connected Graph   总被引:2,自引:0,他引:2  
An edge of a k-connected graph is said to be k-contractible if the contraction of the edge results in a k-connected graph. A k-connected graph with no k-contractible edge is said to be contraction critically k-connected. We prove that a contraction critically 5-connected graph on n vertices has at least n/5 vertices of degree 5. We also show that, for a graph G and an integer k greater than 4, there exists a contraction critically k-connected graph which has G as its induced subgraph.  相似文献   

6.
Let k be a positive integer and let G be a k-connected graph. An edge of G is called k-contractible if its contraction still results in a k-connected graph. A non-complete k-connected graph G is called contraction-critical if G has no k-contractible edge. Let G be a contraction-critical 5-connected graph, Su proved in [J. Su, Vertices of degree 5 in contraction-critical 5-connected graphs, J. Guangxi Normal Univ. 17 (3) (1997) 12-16 (in Chinese)] that each vertex of G is adjacent to at least two vertices of degree 5, and thus G has at least vertices of degree 5. In this paper, we further study the properties of contraction-critical 5-connected graph. In the process, we investigate the structure of the subgraph induced by the vertices of degree 5 of G. As a result, we prove that a contraction-critical 5-connected graph G has at least vertices of degree 5.  相似文献   

7.
An edge e of a k-connected graph G is said to be a removable edge if Ge is still k-connected, where Ge denotes the graph obtained from G by deleting e to get Ge, and for any end vertex of e with degree k − 1 in Ge, say x, delete x, and then add edges between any pair of non-adjacent vertices in N Ge (x). The existence of removable edges of k-connected graphs and some properties of 3-connected graphs and 4-connected graphs have been investigated. In the present paper, we investigate some properties of k-connected graphs and study the distribution of removable edges on a cycle in a k-connected graph (k ≥ 4).  相似文献   

8.
An edge/non-edge in a k-connected graph is contractible if its contraction does not result in a graph of lower connectivity. We focus our study on contractible edges and non-edges in chordal graphs. Firstly, we characterize contractible edges in chordal graphs using properties of tree decompositions with respect to minimal vertex separators. Secondly, we show that in every chordal graph each non-edge is contractible. We also characterize non-edges whose contraction leaves a k-connected chordal graph.  相似文献   

9.
An edge of a k-connected graph is said to be k-contractible if its contraction results in a k-connected graph. A k-connected non-complete graph with no k-contractible edge, is called contraction critical k-connected. Let G be a contraction critical 5-connected graph, in this paper we show that G has at least ${\frac{1}{2}|G|}$ vertices of degree 5.  相似文献   

10.
An edge e in a 3-connected graph G is contractible if the contraction G/e is still 3-connected. The existence of contractible edges is a very useful induction tool. Let G be a simple 3-connected graph with at least five vertices. Wu [7] proved that G has at most vertices that are not incident to contractible edges. In this paper, we characterize all simple 3-connected graphs with exactly vertices that are not incident to contractible edges. We show that all such graphs can be constructed from either a single vertex or a 3-edge-connected graph (multiple edges are allowed, but loops are not allowed) by a simple graph operation. Research partially supported by an ONR grant under grant number N00014-01-1-0917  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号