首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We derive computable a posteriori error estimates for the lowest order nonconforming Crouzeix-Raviart element applied to the approximation of incompressible Stokes flow. The estimator provides an explicit upper bound that is free of any unknown constants, provided that a reasonable lower bound for the inf-sup constant of the underlying problem is available. In addition, it is shown that the estimator provides an equivalent lower bound on the error up to a generic constant.

  相似文献   


2.
Two residual-based a posteriori error estimators of the nonconforming Crouzeix-Raviart element are derived for elliptic problems with Dirac delta source terms.One estimator is shown to be reliable and efficient,which yields global upper and lower bounds for the error in piecewise W1,p seminorm.The other one is proved to give a global upper bound of the error in Lp-norm.By taking the two estimators as refinement indicators,adaptive algorithms are suggested,which are experimentally shown to attain optimal convergence orders.  相似文献   

3.
Summary We present an a posteriori error estimator for the non-conforming Crouzeix-Raviart discretization of the Stokes equations which is based on the local evaluation of residuals with respect to the strong form of the differential equation. The error estimator yields global upper and local lower bounds for the error of the finite element solution. It can easily be generalized to the stationary, incompressible Navier-Stokes equations and to other non-conforming finite element methods. Numerical examples show the efficiency of the proposed error estimator.  相似文献   

4.
Summary. In this paper, we derive quasi-norm a priori and a posteriori error estimates for the Crouzeix-Raviart type finite element approximation of the p-Laplacian. Sharper a priori upper error bounds are obtained. For instance, for sufficiently regular solutions we prove optimal a priori error bounds on the discretization error in an energy norm when . We also show that the new a posteriori error estimates provide improved upper and lower bounds on the discretization error. For sufficiently regular solutions, the a posteriori error estimates are further shown to be equivalent on the discretization error in a quasi-norm. Received January 25, 1999 / Revised version received June 5, 2000 Published online March 20, 2001  相似文献   

5.
In this paper, we study adaptive finite element discretization schemes for an optimal control problem governed by elliptic PDE with an integral constraint for the state. We derive the equivalent a posteriori error estimator for the finite element approximation, which particularly suits adaptive multi-meshes to capture different singularities of the control and the state. Numerical examples are presented to demonstrate the efficiency of a posteriori error estimator and to confirm the theoretical results.  相似文献   

6.
Optimal convergence rates of adaptive finite element methods are well understood in terms of the axioms of adaptivity.One key ingredient is the discrete reliability of a residualbased a posteriori error estimator,which controls the error of two discrete finite element solutions based on two nested triangulations.In the error analysis of nonconforming finite element methods,like the Crouzeix-Raviart or Morley finite element schemes,the difference of the piecewise derivatives of discontinuous approximations to the distributional gradients of global Sobolev functions plays a dominant role and is the object of this paper.The nonconforming interpolation operator,which comes natural with the definition of the aforementioned nonconforming finite element in the sense of Ciarlet,allows for stability and approximation properties that enable direct proofs of the reliability for the residual that monitors the equilibrium condition.The novel approach of this paper is the suggestion of a right-inverse of this interpolation operator in conforming piecewise polynomials to design a nonconforming approximation of a given coarse-grid approximation on a refined triangulation.The results of this paper allow for simple proofs of the discrete reliability in any space dimension and multiply connected domains on general shape-regular triangulations beyond newest-vertex bisection of simplices.Particular attention is on optimal constants in some standard discrete estimates listed in the appendices.  相似文献   

7.
Summary. A residual based error estimator for the approximation of linear elliptic boundary value problems by nonconforming finite element methods is introduced and analyzed. In particular, we consider mortar finite element techniques restricting ourselves to geometrically conforming domain decomposition methods using P1 approximations in each subdomain. Additionally, a residual based error estimator for Crouzeix-Raviart elements of lowest order is presented and compared with the error estimator obtained in the more general mortar situation. It is shown that the computational effort of the error estimator can be considerably reduced if the special structure of the Lagrange multiplier is taken into account. Received July 18, 1997 / Revised version received July 27, 1998 / Published online September 7, 1999  相似文献   

8.
We obtain a computable a posteriori error bound on the broken energy norm of the error in the Fortin-Soulie finite element approximation of a linear second order elliptic problem with variable permeability. This bound is shown to be efficient in the sense that it also provides a lower bound for the broken energy norm of the error up to a constant and higher order data oscillation terms. The estimator is completely free of unknown constants and provides a guaranteed numerical bound on the error.

  相似文献   


9.
We derive two optimal a posteriori error estimators for an implicit fully discrete approximation to the solutions of linear integro‐differential equations of the parabolic type. A continuous, piecewise linear finite element space is used for the space discretization and the time discretization is based on an implicit backward Euler method. The a posteriori error indicator corresponding to space discretization is derived using the anisotropic interpolation estimates in conjunction with a Zienkiewicz‐Zhu error estimator to approach the error gradient. The error due to time discretization is derived using continuous, piecewise linear polynomial in time. We use the linear approximation of the Volterra integral term to estimate the quadrature error in the second estimator. Numerical experiments are performed on the isotropic mesh to validate the derived results.© 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1309–1330, 2016  相似文献   

10.
We consider an augmented mixed finite element method applied to the linear elasticity problem and derive a posteriori error estimators that are simpler and easier to implement than the ones available in the literature. In the case of homogeneous Dirichlet boundary conditions, the new a posteriori error estimator is reliable and locally efficient, whereas for non-homogeneous Dirichlet boundary conditions, we derive an a posteriori error estimator that is reliable and satisfies a quasi-efficiency bound. Numerical experiments illustrate the performance of the corresponding adaptive algorithms and support the theoretical results.  相似文献   

11.
In this paper, we propose and numerically investigate a superconvergent cluster recovery (SCR) method for the Crouzeix-Raviart (CR) element. The proposed recovery method reconstructs a $C^0$ linear gradient. A linear polynomial approximation is obtained by a least square fitting to the CR element approximation at certain sample points, and then taken derivatives to obtain the recovered gradient. The SCR recovery operator is superconvergent on uniform mesh of four patterns. Numerical examples show that SCR can produce a superconvergent gradient approximation for the CR element, and provide an asymptotically exact error estimator in the adaptive CR finite element method.  相似文献   

12.
In this paper, we investigate a priori error estimates and superconvergence properties for a model optimal control problem of bilinear type, which includes some parameter estimation application. The state and co-state are discretized by piecewise linear functions and control is approximated by piecewise constant functions. We derive a priori error estimates and superconvergence analysis for both the control and the state approximations. We also give the optimal L^2-norm error estimates and the almost optimal L^∞-norm estimates about the state and co-state. The results can be readily used for constructing a posteriori error estimators in adaptive finite element approximation of such optimal control problems.  相似文献   

13.
S. Repin  S. Sauter  A. Smolianski 《PAMM》2003,2(1):513-514
The present work is devoted to the a posteriori error estimation for 2nd order elliptic problems with Dirichlet boundary conditions. Using the duality technique we derive a reliable and efficient a posteriori error estimator that measures the error in the energy norm. All the derivations are done on continuous level, and the estimator can be used in assessing the error of any approximate solution which belongs to the Sobolev space H1, independently of the discretization method chosen. In particular, we make no use of the Galerkin orthogonality, which enables us to implement the estimator for measuring the error of the fictitious domain/penalty finite element method. The estimator is easily computable, and the only constant present in the estimator is the one from Friedrichs' inequality; the constant depends solely on the domain geometry, and the estimator is quite non‐sensitive to the error in the constant evaluation. Finally, we show how accurately the estimator captures the local error distribution, thus, creating a base for a justified adaptivity of an approximation.  相似文献   

14.
We consider a system of two coupled elliptic equations, one defined on a bulk domain and the other one on the boundary surface. The numerical error of the finite element solution can be controlled by a residual a posteriori error estimator which takes into account the approximation errors due to the discretisation in space as well as the polyhedral approximation of the surface. The estimators naturally lead to refinement indicators for an adaptive algorithm to control the overall error. Numerical experiments illustrate the performance of the a posteriori error estimator and the adaptive algorithm. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
In this work, a contact problem between a linear elastic material and a deformable obstacle is numerically analyzed. The contact is modeled using the well-known normal compliance contact condition. The weak formulation leads to a nonlinear variational equation which is approximated by using the finite element method. A priori error estimates are recalled. Then, we define an a posteriori error estimator of residual type to evaluate the accuracy of the finite element approximation of the problem. Upper and lower bounds of the discretization error are proved for this estimator.  相似文献   

16.
This paper presents an a posteriori error analysis for the linear finite element approximation of the Signorini problem in two space dimensions. A posteriori estimations of residual type are defined and upper and lower bounds of the discretization error are obtained. We perform several numerical experiments in order to compare the convergence of the terms in the error estimator with the discretization error.  相似文献   

17.
《Comptes Rendus Mathematique》2008,346(21-22):1187-1190
We derive a residual a posteriori error estimator for the algebraic orthogonal subscales stabilization of convective dispersive transport equation. The estimator yields upper bound on the error which is global and lower bound that is local. Numerical studies show the behaviour of the error indicator and how it is robust to deal with singularities. To cite this article: B. Achchab et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).  相似文献   

18.
In this paper,a residual type of a posteriori error estimator for the general second order elliptic eigenpair approximation by the mixed finite element method is derived and analyzed,based on a type of superconvergence result of the eigenfunction approximation.Its efficiency and reliability are proved by both theoretical analysis and numerical experiments.  相似文献   

19.
We derive a residual-based a posteriori error estimator for a discontinuous Galerkin approximation of the Steklov eigenvalue problem. Moreover, we prove the reliability and efficiency of the error estimator. Numerical results are provided to verify our theoretical findings.  相似文献   

20.
In this work, we derive a posteriori error estimates for discontinuous Galerkin finite element method on polytopal mesh. We construct a reliable and efficient a posteriori error estimator on general polygonal or polyhedral meshes. An adaptive algorithm based on the error estimator and DG method is proposed to solve a variety of test problems. Numerical experiments are performed to illustrate the effectiveness of the algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号