首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
In this paper, a formulation for an interior-point Newton method of general nonlinear programming problems is presented. The formulation uses the Coleman-Li scaling matrix. The local convergence and the q-quadratic rate of convergence for the method are established under the standard assumptions of the Newton method for general nonlinear programming.  相似文献   

2.
Based on an augmented Lagrangian line search function, a sequential quadratically constrained quadratic programming method is proposed for solving nonlinearly constrained optimization problems. Compared to quadratic programming solved in the traditional SQP methods, a convex quadratically constrained quadratic programming is solved here to obtain a search direction, and the Maratos effect does not occur without any other corrections. The “active set” strategy used in this subproblem can avoid recalculating the unnecessary gradients and (approximate) Hessian matrices of the constraints. Under certain assumptions, the proposed method is proved to be globally, superlinearly, and quadratically convergent. As an extension, general problems with inequality and equality constraints as well as nonmonotone line search are also considered.  相似文献   

3.
Sufficient optimality conditions are obtained for a nonlinear multiple objective fractional programming problem involving η-semidifferentiable type I-preinvex and related functions. Furthermore, a general dual is formulated and duality results are proved under the assumptions of generalized semilocally type I-preinvex and related functions. Our result generalize the results of Preda [V. Preda, Optimality and duality in fractional multiple objective programming involving semilocally preinvex and related functions, J. Math. Anal. Appl. 288 (2003) 365–382] and Stancu-Minasian [I.M. Stancu-Minasian, Optimality and duality in fractional programming involving semilocally preinvex and related functions, J. Inform. Optim. Sci. 23 (2002) 185–201].  相似文献   

4.
In this paper a linear programming-based optimization algorithm called the Sequential Cutting Plane algorithm is presented. The main features of the algorithm are described, convergence to a Karush–Kuhn–Tucker stationary point is proved and numerical experience on some well-known test sets is showed. The algorithm is based on an earlier version for convex inequality constrained problems, but here the algorithm is extended to general continuously differentiable nonlinear programming problems containing both nonlinear inequality and equality constraints. A comparison with some existing solvers shows that the algorithm is competitive with these solvers. Thus, this new method based on solving linear programming subproblems is a good alternative method for solving nonlinear programming problems efficiently. The algorithm has been used as a subsolver in a mixed integer nonlinear programming algorithm where the linear problems provide lower bounds on the optimal solutions of the nonlinear programming subproblems in the branch and bound tree for convex, inequality constrained problems.  相似文献   

5.
史秀波  李泽民 《经济数学》2007,24(2):208-212
本文研究线性和非线性等式约束非线性规划问题的降维算法.首先,利用一般等式约束问题的降维方法,将线性等式约束非线性规划问题转换成一个非线性方程组,解非线性方程组即得其解;然后,对线性和非线性等式约束非线性规划问题用Lagrange乘子法,将非线性约束部分和目标函数构成增广的Lagrange函数,并保留线性等式约束,这样便得到一个线性等式约束非线性规划序列,从而,又将问题转化为求解只含线性等式约束的非线性规划问题.  相似文献   

6.
In this paper, we propose a non-monotone line search multidimensional filter-SQP method for general nonlinear programming based on the Wächter–Biegler methods for nonlinear equality constrained programming. Under mild conditions, the global convergence of the new method is proved. Furthermore, with the non-monotone technique and second order correction step, it is shown that the proposed method does not suffer from the Maratos effect, so that fast local convergence to second order sufficient local solutions is achieved. Numerical results show that the new approach is efficient.  相似文献   

7.
1.IntroductionInthispaper,weconsiderthefollowingnonlinearprogr~ngproblemwherec(x)=(c,(x),c2(2),',We(.))',i(x)andci(x)(i=1,2,',m)arerealfunctions*ThisworkissupPOrtedbytheNationalNaturalScienceFOundationofChinaandtheManagement,DecisionandinformationSystemLab,theChineseAcademyofSciences.definedinD={xEReIISx5u}.Weassumethath相似文献   

8.
A penalty function method for solving inverse optimal value problem   总被引:2,自引:0,他引:2  
In order to consider the inverse optimal value problem under more general conditions, we transform the inverse optimal value problem into a corresponding nonlinear bilevel programming problem equivalently. Using the Kuhn–Tucker optimality condition of the lower level problem, we transform the nonlinear bilevel programming into a normal nonlinear programming. The complementary and slackness condition of the lower level problem is appended to the upper level objective with a penalty. Then we give via an exact penalty method an existence theorem of solutions and propose an algorithm for the inverse optimal value problem, also analysis the convergence of the proposed algorithm. The numerical result shows that the algorithm can solve a wider class of inverse optimal value problem.  相似文献   

9.
A Haar wavelet technique is discussed as a method for discretizing the nonlinear system equations for optimal control problems. The technique is used to transform the state and control variables into nonlinear programming (NLP) parameters at collocation points. A nonlinear programming solver can then be used to solve optimal control problems that are rather general in form. Here, general Bolza optimal control problems with state and control constraints are considered. Examples of two kinds of optimal control problems, continuous and discrete, are solved. The results are compared to those obtained by using other collocation methods.  相似文献   

10.
The linearization method, for solving the general problem of nonlinear programming and its various modifications, is considered. On the basic ideas of the linearization method, the algorithms for solving the various problems of mathematical programming are constructed for (a) solving systems of equalities and inequalities, (b) multiobjective programming and (c) complementary problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号