首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
物流联络中心的人力成本随着坐席拥有的技能、服务渠道的多少以及服务时段的不同而不同,对人员进行合理班次设计以节省人力成本尤为必要。考虑现实联络中心工作时间的连续与中断、技能组和渠道组的匹配等,提出采用分阶段法优化班次。首先给出不考虑时间中断的坐席的排班模型A,求得排班方案;接下来,在此基础上将中断时间约束加入,建立模型B,求得班次覆盖矩阵;最后加入排班调整约束,建立模型C,对多技能组中各渠道组进行调整,给出最符合实际情况的最优排班调整方案。数值实验结合物流企业实例和各方案的比较,验证了模型的有效性。该方法为联络中心排班提供了新思路,对其它服务行业的排班也具有一定的参考价值。  相似文献   

2.
为了解决配送中心选址与带时间窗的多中心车辆路径优化组合决策问题,利用双层规划法建立了配送中心选址与车辆路径安排的多目标整数规划模型,针对该模型的特点,采用两阶段启发式算法进行了求解。首先,通过基于聚集度的启发式算法对客户进行分类,确定了备选配送中心的服务范围;然后,基于双层规划法,以配送中心选址成本最小作为上层规划目标,以车辆配送成本最小作为下层规划目标,建立了多目标整数规划模型;最后,利用改进的蚁群算法进行了求解。通过分析实例数据和Barreto Benchmark算例的实验结果,验证了该模型的有效性和可行性。  相似文献   

3.
飞机排班是航空运输生产计划的重要环节,对航空公司的正常运营和整体效益有着决定性影响;飞机排班通常构建为大规模整数规划问题,是航空运筹学研究的重要课题,构建的模型属于严重退化的NP-Hard问题.在考虑对多种机型的飞机进行排班时,大大增加了问题的复杂性.针对航空公司实际情况,建立多种机型的飞机排班模型;为实现模型的有效求解,提出了基于约束编程的动态列生成算法;即用约束编程快速求解航班连线(航班串)并计算航班串简约成本,动态选择列集并与限制主问题进行迭代.最后,利用国内某航空公司干线航班网络实际数据验证模型和算法的有效性.  相似文献   

4.
基于专用道设置的策略,该文提出了一个新的动态交通规划问题。大型运动会要求主办方在规定时间内将指定人员从运动员村运送到指定地点。该问题便是源自2010年广州亚运会的交通需求。其要求在保证30分钟内将运动员从运动员村运送到指定场馆的条件下,最小化设置专用通道的总成本。由于该问题的规模较大,本文提出了三种启发式算法用以求解已提出的线性整数规划模型。计算结果表明,通过该文提出的启发式算法得到的解与相对应的采用数学规划软件Lingo8.0得到的解之间的平均误差均小于1.89%。同时,启发式算法的计算时间远小于Lingo8.0所需的计算时间。  相似文献   

5.
为解决带时间窗和多配送人员的车辆路径问题,本文采用混合启发式算法对其进行求解。该算法主要由整数规划重组、局部搜索算法和模拟退火算法三部分组成。在算法中,整数规划重组有效提高了解的质量,局部搜索算法和模拟退火算法保证了算法搜索的深入性和广泛性。通过与CPLEX和禁忌搜索算法进行对比,证实了混合启发式算法实用价值更高,求解效果更好。  相似文献   

6.
基于可变建设成本的风险共担选址—库存模型研究   总被引:1,自引:0,他引:1  
在固定建设成本风险共担选址-库存问题(Location model of risk pooling,LMRP)研究基础上,本文从优化角度将配送中心建设成本设为配送中心规模的线性函数,将模型扩展为可变建设成本风险共担选址—库存问题(Location model of risk pooling based on variable construction cost,LMRPVCC),构建非线性0-1整数规划模型。采用启发式粒子群算法求解模型,对经典文献算例进行测算,并依据计算结果,对影响模型目标值的相关参数进行敏感性分析。  相似文献   

7.
马宁  周支立  刘雅 《运筹与管理》2018,27(10):17-22
切割生产广泛存在于工业企业,是原材料加工的重要环节。已有文献主要关注单周期切割问题,但是切割计划也是生产计划的一部分,切割计划和生产计划应该协调优化,达到全局最优。本文研究考虑生产计划的多周期切割问题,目标是最小化运营成本,包括准备成本、切割成本、库存成本以及母材消耗成本。首先建立混合整数规划模型;提出动态规划启发式算法;最后对算例在多种情境下测试,分析成本因子变化对最优结果的影响。算法结果与CPLEX最优结果比较,平均误差为1.85%,表明算法是有效的。  相似文献   

8.
李凯  杨阳  刘渤海 《运筹与管理》2019,28(12):178-184
假定生产时机器成本是固定的,研究了一类考虑成本的同类机调度问题,调度的目标是在给定加工完所有作业的总预算的成本限制下最小化最大作业延迟时间。为该类问题构建了混合整数规划模型。通过设计相关规则在机器成本预算内来选择加工机器,以及对传统的LPT(最长加工时间优先)、ECT(最早完工时间优先)、EDD(最早工期优先)等算法进行改进,提出了一个启发式算法H,并理论证明了该算法在同型机和同类机下的最坏误差界。通过算例说明了算法的执行情况,同时也考虑了给定总预算不同的多种情形,采用大量随机数据实验验证了算法的有效性。  相似文献   

9.
首先针对不同类型、数量乘用车的物流运输问题,构建整数线性规划模型,并对模型进行逐层优化求解,通过MATLAB编写通用程序实现计算;在此基础之上,为解决不同目的地的运输要求,采用启发式逐层优化算法进行求解;最后考虑多因素的实际问题,建立分层划分模型,提出构造型分层划分启发式算法求解.计算表明,所建模型计算结果良好,实现了对乘用车物流运输计划问题的优化.  相似文献   

10.
采用人工蜂群算法对配送中心选址问题进行求解,给出食物源的编码方法,通过整数规范化,使算法能在整数空间内对问题进行求解.应用算法进行了仿真实验,并将结果与其它一些启发式算法进行了比较和分析.计算结果表明人工蜂群算法可以有效求解配送中心选址问题,同时也为算法求解其它一些组合优化问题提供了有益思路.  相似文献   

11.
This paper presents an approach to optimise level of repair decisions taking into account submodular properties of standard life cycle cost functions, which include fixed and variable costs. It proposes an integer programming formulation to solve level of repair problems for multi-echelon multi-indenture level systems. The method converges quickly to the optimum solution relying on heuristics to obtain tight bounds for a subsequent branch-and-bound procedure. A software package called level of repair optimisation model (LOROM) was developed to implement the branch-and-bound method that does not rely on linear programming relaxations. This approach is rather generic and can be applied to a wide class of problems with convex total cost functions such as plant location problems or transportation problems with fixed costs.  相似文献   

12.
The 0–1 mixed integer programming problem is used for modeling many combinatorial problems, ranging from logical design to scheduling and routing as well as encompassing graph theory models for resource allocation and financial planning. This paper provides a survey of heuristics based on mathematical programming for solving 0–1 mixed integer programs (MIP). More precisely, we focus on the stand-alone heuristics for 0–1 MIP as well as those heuristics that use linear programming techniques or solve a series of linear programming models or reduced problems, deduced from the initial one, in order to produce a high quality solution of a considered problem. Our emphasis will be on how mathematical programming techniques can be used for approximate problem solving, rather than on comparing performances of heuristics.  相似文献   

13.
In this paper, we investigate the production order scheduling problem derived from the production of steel sheets in Shanghai Baoshan Iron and Steel Complex (Baosteel). A deterministic mixed integer programming (MIP) model for scheduling production orders on some critical and bottleneck operations in Baosteel is presented in which practical technological constraints have been considered. The objective is to determine the starting and ending times of production orders on corresponding operations under capacity constraints for minimizing the sum of weighted completion times of all orders. Due to large numbers of variables and constraints in the model, a decomposition solution methodology based on a synergistic combination of Lagrangian relaxation, linear programming and heuristics is developed. Unlike the commonly used method of relaxing capacity constraints, this methodology alternatively relaxes constraints coupling integer variables with continuous variables which are introduced to the objective function by Lagrangian multipliers. The Lagrangian relaxed problem can be decomposed into two sub-problems by separating continuous variables from integer ones. The sub-problem that relates to continuous variables is a linear programming problem which can be solved using standard software package OSL, while the other sub-problem is an integer programming problem which can be solved optimally by further decomposition. The subgradient optimization method is used to update Lagrangian multipliers. A production order scheduling simulation system for Baosteel is developed by embedding the above Lagrangian heuristics. Computational results for problems with up to 100 orders show that the proposed Lagrangian relaxation method is stable and can find good solutions within a reasonable time.  相似文献   

14.
In spite of the many special purpose heuristics for specific classes of integer programming (IP) problems, there are few developments that focus on general purpose integer programming heuristics. This stems partly from the perception that general purpose methods are likely to be less effective than specialized procedures for specific problems, and partly from the perception that there is no unifying theoretical basis for creating general purpose heuristics. Still, there is a general acknowledgment that methods which are not limited to solving IP problems on a class by class basis, but which apply to a broader range of problems, have significant value. We provide a theoretical framework and associated explicit proposals for generating general purpose IP heuristics. Our development, makes use of cutting plane derivations that also give a natural basis for marrying heuristics with exact branch and cut methods for integer programming problems.  相似文献   

15.
A vital task facing government agencies and commercial organizations that report data is to represent the data in a meaningful way and simultaneously to protect the confidentiality of critical components of this data. The challenge is to organize and disseminate data in a form that prevents such critical components from being inferred by groups bent on corporate espionage, to gain competitive advantages, or having a desire to penetrate the security of the information underlying the data. Controlled tabular adjustment is a recently developed approach for protecting sensitive information by imposing a special form of statistical disclosure limitation on tabular data. The underlying model gives rise to a mixed integer linear programming problem involving both continuous and discrete (zero-one) variables. We develop stratified ordered (s-ordered) heuristics and a new meta-heuristic learning approach for solving this model, and compare their performance to previous heuristics and to an exact algorithm embodied in the state-of-the-art ILOG- CPLEX software. Our new approaches are based on partitioning the problem into its discrete and continuous components, first creating an s-ordered heuristic that reduces the number of binary variables through a grouping procedure that combines an exact mathematical programming model with constructive heuristics. To gain further advantages we then replace the mathematical programming model with an evolutionary scatter search approach that makes it possible to extend the method to large problems with over 9000 entries. Finally, we introduce a new metaheuristic learning method that significantly improves the quality of solutions obtained.  相似文献   

16.
In this paper, we describe the implementation of some heuristics for convex mixed integer nonlinear programs. The work focuses on three families of heuristics that have been successfully used for mixed integer linear programs: diving heuristics, the Feasibility Pump, and Relaxation Induced Neighborhood Search (RINS). We show how these heuristics can be adapted in the context of mixed integer nonlinear programming. We present results from computational experiments on a set of instances that show how the heuristics implemented help finding feasible solutions faster than the traditional branch-and-bound algorithm and how they help in reducing the total solution time of the branch-and-bound algorithm.  相似文献   

17.
Good inventory management is essential for a firm to be cost competitive and to acquire decent profit in the market, and how to achieve an outstanding inventory management has been a popular topic in both the academic field and in real practice for decades. As the production environment getting increasingly complex, various kinds of mathematical models have been developed, such as linear programming, nonlinear programming, mixed integer programming, geometric programming, gradient-based nonlinear programming and dynamic programming, to name a few. However, when the problem becomes NP-hard, heuristics tools may be necessary to solve the problem. In this paper, a mixed integer programming (MIP) model is constructed first to solve the lot-sizing problem with multiple suppliers, multiple periods and quantity discounts. An efficient Genetic Algorithm (GA) is proposed next to tackle the problem when it becomes too complicated. The objectives are to minimize total costs, where the costs include ordering cost, holding cost, purchase cost and transportation cost, under the requirement that no inventory shortage is allowed in the system, and to determine an appropriate inventory level for each planning period. The results demonstrate that the proposed GA model is an effective and accurate tool for determining the replenishment for a manufacturer for multi-periods.  相似文献   

18.
The main purpose of this paper is to demonstrate a real-world application of pure integer programming to find the optimum solution to a labour cost problem. The length of a daily working shift is defined as an integer variable and several shift strategies are analysed to determine the optimum length and shift combinations that satisfy a predicted demand at minimum cost. The state-space model has been used to predict the stochastic behaviour of monthly demands for beer and soft drink. Savings of about 7% of the annual sales have been obtained as a result of implementing the integer programming approach. A numerical example shows that the solution obtained by rounding off the continuous optimal solution does not match with the integer optimal solution. It was also noted that if a rounded-off solution is feasible, then it provides an initial integer solution for the branch-and-bound algorithm that may reduce the computational time.  相似文献   

19.
In spite of the many special purpose heuristics for specific classes of integer programming (IP) problems, there are few developments that focus on general purpose integer programming heuristics. This stems partly from the perception that general purpose methods are likely to be less effective than specialized procedures for specific problems, and partly from the perception that there is no unifying theoretical basis for creating general purpose heuristics. Still, there is a general acknowledgment that methods which are not limited to solving IP problems on a class by class basis, but which apply to a broader range of problems, have significant value. We show that certain ideas proposed in the 1970s, which are often overlooked, can be reformulated and linked with more recent developments to give a useful theoretical framework for generating general purpose IP heuristics. This framework, which has the appeal of being highly visual, makes use of cutting plane derivations that also give a natural basis for marrying heuristics with exact branch and cut methods for integer programming problems.  相似文献   

20.
To stay ahead of their competition, pharmaceutical firms must make effective use of their new product development (NPD) capabilities by efficiently allocating its analytical, clinical testing and manufacturing resources across various drug development projects. The resulting project scheduling problems involve coordinating hundreds of testing and manufacturing activities over a period of several quarters. Most conventional integer programming approaches are computationally impractical for problems of this size, while priority rule-driven heuristics seldom provide consistent solution quality. We propose a Lagrangian decomposition (LD) heuristic that exploits the special structure of these problems. Some resources (typically manpower) are shared across all on-going projects while others (typically equipment) are specific to individual project categories. Our objective function is a weighted discounted cost expressed in terms of activity completion times. The LD heuristics were subjected to a comprehensive experimental study based on typical operational instances. While the conventional “Reward–Risk” priority rule heuristic generates duality gaps between 47–58%, the best LD heuristic achieves duality gaps between 10–20%. The LD heuristics also yield makespan reductions of over 30% over the Reward–Risk priority rule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号