首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
This paper focuses at the dynamics of attitude change in large groups. A multi-agent computer simulation has been developed as a tool to study hypothesis we take to study these dynamics. A major extension in comparison to earlier models is that Social Judgment Theory is being formalized to incorporate processes of assimilation and contrast in persuasion processes. Results demonstrate that the attitude structure of agents determines the occurrence of assimilation and contrast effects, which in turn cause a group of agents to reach consensus, to bipolarize, or to develop a number of subgroups sharing the same position. Subsequent experiments demonstrate the robustness of these effects for a different formalization of the social network, and the susceptibility for population size.This paper won the best paper award at NAACSOS 2004, Pittsburgh PA. NAACSOS is the main conference of the North American Association for Computational Social and Organizational Science.Wander Jager received his Ph.D. degree in Social Sciences in 2000 from the University of Groningen, the Netherlands. Dr. Jager is currently Associate Professor at the University of Groningen. His current application domain concerns marketing, innovation diffusion and social simulation. Dr. Jager has authored or co-authored various papers on market dynamics, diffusion processes, resource use and sustainable consumption.Frédéric Amblard received his Ph.D. degree in Multi-Agent Simulation in 2003 from Blaise Pascal University, Clermont-Ferrand, France. Dr. Amblard is currently Associate Professor at the University of Social Sciences in Toulouse and researcher associated to the CNRS-IRIT, Institute of Research in Computer Sciences in Toulouse. His current application domain now concerns Agent-Based Social Simulation. Dr. Amblard has authored or coauthored various research papers either in computer sciences, in physics or in sociology.A preceding version of this paper has been presented to the 2004 Conference of the North American Association for Computational Social and Organization Science, Pittsburgh, USA and received the best paper award from this conference.  相似文献   

2.
Nepotism has been the primary influence on political behavior throughout human history. Despite the spread of democracy in the 20th century, nepotistic regimes have hardly disappeared. Nepotism heavily influences political activity throughout the developing world, Middle East, and central Asia where family ties are essential for gaining access to power, state resources, and privileges. Rebelling against such nepotistic regimes is difficult and risky. RiskTaker is an agent-based model we developed for testing the influences of various social forces on risk taking behavior, including the formulation of rebellious coalitions. We use RiskTaker to examine the influence of nepotism on the distribution of wealth and social status. Nepotism heavily skews the distribution of wealth and status, leading to the formation of opposing coalitions and exacerbating social unrest.This paper was tied for Best Paper, NAACSOS (North American Association for Computational Social and Organizational Science) Annual Conference 2005, June 26–28, Notre Dame. Robert Sedlmeyer, Department of Computer Science, Indiana University – Purdue University, Fort Wayne provided programming for the RiskTaker model. Lawrence A. Kuznar is a professor of anthropology and director of the Decision Sciences and Theory Institute at Indiana University—Purdue University, Fort Wayne. He has conducted fieldwork among Aymara Indians in Andean Peru and the Navajo of the American southwest. His research interests include computer modeling, theories of risk taking and conflict, terrorism, social evolution, and scientific epistemology. He has authored articles in Ecological Economics (with W. Frederick), Current Anthropology, American Anthropologist, Mathematical Anthropology and Culture Theory and Journal of Anthropological Research, and published two books (Awatimarka Harcourt Brace, 1995 and Reclaiming a Scientific Anthropology Altamira Press, 1997) and two edited volumes. William Frederick has served as a faculty member in the departments of mathematical sciences and the department of computer sciences at Indiana University—Purdue University, Fort Wayne since 1979. His primary interests include mathematical modeling, game theory, and genetic algorithms.  相似文献   

3.
This paper studies the temporal communication patterns of online communities of developers and users of the open source Eclipse Java development environment. It measures the productivity of each community and seeks to identify correlations that exist between group communication characteristics and productivity attributes. The study uses the TeCFlow (Temporal Communication Flow) visualizer to create movie maps of the knowledge flow by analyzing the publicly accessible Eclipse developer mailing lists as an approximation of the social networks of developers and users. Thirty-three different Eclipse communities discussing development and use of components of Eclipse such as the Java Development Tools, the different platform components, the C/C++ Development Tools and the AspectJ extension have been analyzed over a period of six months. The temporal evolution of social network variables such as betweenness centrality, density, contribution index, and degree have been computed and plotted. Productivity of each development group is measured in terms of two indices, namely performance and creativity. Performance of a group is defined as the ratio of new bugs submitted compared with bugs fixed within the same period of time. Creativity is calculated as a function of new features proposed and implemented. Preliminary results indicate that there is a correlation between attributes of social networks such as density and betweenness centrality and group productivity measures in an open source development community. We also find a positive correlation between changes over time in betweenness centrality and creativity, and a negative correlation between changes in betweenness centrality and performance.This paper was tied for Best Paper, NAACSOS (North American Association for Computational Social and Organizational Science) Annual Conference 2005, June 26–28, Notre Dame. Yared H. Kidane obtained a B.Sc. from Addis Ababa University, Ethiopia in Statistics and a M.Sc. in Information Technology specializing in engineering and management of information systems with honors from Royal Institute of Technology Stockholm, Sweden in June 2005. Yared completed his master’s thesis as an exchange student at MIT. He is currently working for Verizon Wireless as an analyst in the reporting and analysis section. Peter A. Gloor is a research fellow both at the MIT Center for Coordination Science and the Center for Digital Strategies at Tuck at Dartmouth and chief scientist at iQuest Analytics. Previously, he was a partner with Deloitte and PwC. He obtained a Ph.D. in Computer Science from the University of Zurich in 1989, and was a Post-Doc at the MIT Lab for Computer Science.  相似文献   

4.
Models of segregation dynamics have examined how individual preferences over neighborhood racial composition determine macroscopic patterns of segregation. Many fewer models have considered the role of household preferences over other location attributes, which may compete with preferences over racial composition. We hypothesize that household preferences over location characteristics other than racial composition affect segregation dynamics in nonlinear ways and that, for a critical range of parameter values, these competing preferences can qualitatively affect segregation outcomes. To test this hypothesis, we develop a dynamic agent-based model that examines macro-level patterns of segregation as the result of interdependent household location choices. The model incorporates household preferences over multiple neighborhood features, some of which are endogenous to residential location patterns, and allows for income heterogeneity across races and among households of the same race. Preliminary findings indicate that patterns of segregation can emerge even when individuals are wholly indifferent to neighborhood racial composition, due to competing preferences over neighborhood density. Further, the model shows a strong tendency to concentrate affluent families in a small number of suburbs, potentially mimicking recent empirical findings on favored quarters in metropolitan areas. This paper was the first runner-up for the 2004 NAACSOS best paper award. Kan Chen is an associate professor in the Department of Computational Science at the National University of Singapore. His recent research interests include spatial and temporal scaling in driven, dissipative systems, applications of self-organized criticality, dynamics of earthquakes, and computational finance. He received a B.Sc. in physics from the University of Science and Technology of China (1983) and a Ph.D. in physics from Ohio State University (1988). Elena Irwin is an associate professor in the Department of Agricultural, Environmental, and Development Economics at Ohio State University. Her research interests include land use change, urban sprawl, household location decisions, and the value of open space. This research applies theory and modeling techniques from the fields of spatial and regional economics, including the application of spatial econometrics and geographic information systems (GIS). She received a B.A. in German and History from Washington University in St. Louis (1988) and a Ph.D. in Agricultural and Resource Economics from the University of Maryland (1998). Ciriyam Jayaprakash is a Professor in the Department of Physics at the Ohio State University. His recent research interests include spatially extended nonlinear systems including fully-developed turbulence, genetic regulatory networks, and applications of statistical mechanical techniques to financial and social sciences. He received an M.S. in Physics from the Indian Institute of Technology, Kanpur (1973), an M.S. in Physics from Caltech (1975) and a Ph.D in Physics from the University of Illinois at Urbana-Champaign (1979). Keith Warren is an assistant professor in the College of Social Work at Ohio State University. His research interests focus on interpersonal interactions in the development and solution of social problems, particularly those of urban areas such as segregation, substance abuse and increased interpersonal violence. He received a B.A in Behavioral Science from Warren Wilson College (1984), and a Ph.D. in Social Work from the University of Texas at Austin (1998)  相似文献   

5.
In research and application, social networks are increasingly extracted from relationships inferred by name collocations in text-based documents. Despite the fact that names represent real entities, names are not unique identifiers and it is often unclear when two name observations correspond to the same underlying entity. One confounder stems from ambiguity, in which the same name correctly references multiple entities. Prior name disambiguation methods measured similarity between two names as a function of their respective documents. In this paper, we propose an alternative similarity metric based on the probability of walking from one ambiguous name to another in a random walk of the social network constructed from all documents. We experimentally validate our model on actor-actor relationships derived from the Internet Movie Database. Using a global similarity threshold, we demonstrate random walks achieve a significant increase in disambiguation capability in comparison to prior models. Bradley A. Malin is a Ph.D. candidate in the School of Computer Science at Carnegie Mellon University. He is an NSF IGERT fellow in the Center for Computational Analysis of Social and Organizational Systems (CASOS) and a researcher at the Laboratory for International Data Privacy. His research is interdisciplinary and combines aspects of bioinformatics, data forensics, data privacy and security, entity resolution, and public policy. He has developed learning algorithms for surveillance in distributed systems and designed formal models for the evaluation and the improvement of privacy enhancing technologies in real world environments, including healthcare and the Internet. His research on privacy in genomic databases has received several awards from the American Medical Informatics Association and has been cited in congressional briefings on health data privacy. He currently serves as managing editor of the Journal of Privacy Technology. Edoardo M. Airoldi is a Ph.D. student in the School of Computer Science at Carnegie Mellon University. Currently, he is a researcher in the CASOS group and at the Center for Automated Learning and Discovery. His methodology is based on probability theory, approximation theorems, discrete mathematics and their geometries. His research interests include data mining and machine learning techniques for temporal and relational data, data linkage and data privacy, with important applications to dynamic networks, biological sequences and large collections of texts. His research on dynamic network tomography is the state-of-the-art for recovering information about who is communicating to whom in a network, and was awarded honors from the ACM SIG-KDD community. Several companies focusing on information extraction have adopted his methodology for text analysis. He is currently investigating practical and theoretical aspects of hierarchical mixture models for temporal and relational data, and an abstract theory of data linkage. Kathleen M. Carley is a Professor of Computer Science in ISRI, School of Computer Science at Carnegie Mellon University. She received her Ph.D. from Harvard in Sociology. Her research combines cognitive science, social and dynamic networks, and computer science (particularly artificial intelligence and machine learning techniques) to address complex social and organizational problems. Her specific research areas are computational social and organization science, social adaptation and evolution, social and dynamic network analysis, and computational text analysis. Her models meld multi-agent technology with network dynamics and empirical data. Three of the large-scale tools she and the CASOS group have developed are: BioWar a city, scale model of weaponized biological attacks and response; Construct a models of the co-evolution of social and knowledge networks; and ORA a statistical toolkit for dynamic social Network data.  相似文献   

6.
This contribution investigates the function of emotion in relation to norms, both in natural and artificial societies. We illustrate that unintentional behavior can be normative and socially functional at the same time, thereby highlighting the role of emotion. Conceiving of norms as mental objects we then examine the role of emotion in maintaining and enforcing such propositional attitudes. The findings are subsequently related to social structural dynamics and questions concerning micro-macro linkage, in natural societies as well as in artificial systems. Finally, we outline the possibilities of an application to the socionic multi-agent architecture SONAR. Christian von Scheve graduated in Sociology with minors in Psychology, Economics, and Political Science at the University of Hamburg, where he also worked as a research assistant at the Institute of Sociology. Currently, he is a 3rd year PhD student at the University of Hamburg. He was a Fellow of the Research Group “Emotions as Bio-Cultural Processes” at the Center for Interdisciplinary Research (ZiF) at Bielefeld University. In his doctoral thesis he develops an interdisciplinary approach to emotion and social structural dynamics, integrating emotion theories from the neurosciences, psychology, and the social sciences. He has published on the role of emotion in large-scale social systems, human-computer interaction, and multi-agent systems. He is co-editor of a forthcoming volume on emotion regulation. Daniel Moldt received his BSc in Computer Science/Software Engineering from the University of Birmingham (England) in 1984, graduated in Informatics at the University of Hamburg, with a minor in Economics in 1990. He received his PhD in Informatics from the University of Hamburg in 1996, where he has been a researcher and lecturer at the Department of Informatics since 1990. Daniel Moldt is also the head of the Laboratory for Agent-Oriented Systems (LAOS) of the theoretical foundations group at the Department of Informatics. His research interests focus on theoretical foundations, software engineering and distributed systems with an emphasis on agent technology, Petri nets, specification languages, intra- and inter-organizational application development, Socionics and emotion in informatics. Julia Fix is currently a PhD student at the Theoretical Foundations of Computer Science Group, Department for Informatics at the University of Hamburg. She studied Informatics and Psychology at the University of Hamburg, with an emphasis on theoretical foundations of multi-agent systems and wrote her diploma theses about emotional agent systems. Her current research interests focus on conceptual challenges and theoretical foundations of modelling emotions in multi-agent systems, emotion-based norm enforcement and maintenance, and Socionics. A further research focus are Petri nets, in particular the use of Petri-net modelling formalisms for representing different aspects of emotion in agent systems. Rolf von Lüde is a professor of Sociology at the University of Hamburg with a focus in teaching and research in Sociology of Organizations, Work and Industry since 1996. He graduated in Economics, Sociology, and Psychology, and received his doctorate in Economics and the venia legendi in Sociology from the University of Dortmund. His current research focuses on labor conditions, the organization of production, social change and the educational system, the organizational structures of university, Socionics as a new approach to distributed artificial intelligence in cooperation with computer scientists, new public management, and emotions and social structures. Rolf von Lüde is currently Head of Department of Social Sciences and Vice Dean of the School of Business, Economics and Social Sciences, University of Hamburg.  相似文献   

7.
The Enron email corpus is appealing to researchers because it represents a rich temporal record of internal communication within a large, real-world organization facing a severe and survival-threatening crisis. We describe how we enhanced the original corpus database and present findings from our investigation undertaken with a social network analytic perspective. We explore the dynamics of the structure and properties of the organizational communication network, as well as the characteristics and patterns of communicative behavior of the employees from different organizational levels. We found that during the crisis period, communication among employees became more diverse with respect to established contacts and formal roles. Also during the crisis period, previously disconnected employees began to engage in mutual communication, so that interpersonal communication was intensified and spread through the network, bypassing formal chains of communication. The findings of this study provide valuable insight into a real-world organizational crisis, which may be further used for validating or developing theories and dynamic models of organizational crises; thereby leading to a better understanding of the underlying causes of, and response to, organization failure. Jana Diesner is a Research Associate and Linguistic Programmer at the Center for Computational Analysis of Social and Organizational Systems at the School of Computer Science (CASOS), Carnegie Mellon University (CMU). She received her Masters in Communications from Dresden University of Technology in 2003. She had been a research scholar at the Institute for Complex Engineered System at CMU in 2001 and 2002. Her research combines computational linguistics, social network analysis and computational organization theory. Terrill L. Frantz is a post-doc researcher at the Center for Computational Analysis of Social and Organizational Systems (CASOS) in the School of Computer Science at Carnegie Mellon University. His research involves studying the dynamics of organization social-networks and behavior via computer modeling and simulation. He is developing an expertise in workforce integration strategy and policy evaluation during organization mergers. He earned his doctorate (Ed.D. in Organization Change) from Pepperdine University, a MBA from New York University and a BS in Business Administration (Computer Systems Management) from Drexel University. Prior to entering academic research, for nearly 20 years he was a software applications development manager in the global financial services and industrial chemicals industries; most recently as a Vice President in Information Technology at Morgan Stanley in Hong Kong, New York and London. Kathleen M. Carley is a professor at the Institute for Software Research International in the School of Computer Science at Carnegie Mellon University. She is the director of the center for Computational Analysis of Social and Organizational Systems (CASOS) <http://www.casos.cs.cmu.edu/>, a university wide interdisciplinary center that brings together network analysis, computer science and organization science (www.casos.ece.cmu.edu) and has an associated NSF funded training program for Ph.D. students. She carries out research that combines cognitive science, social networks and computer science to address complex social and organizational problems. Her specific research areas are computational social and organization theory, group, organizational and social adaptation and evolution, social and dynamic network analysis, computational text analysis, and the impact of telecommunication technologies and policy on communication, information diffusion, disease contagion and response within and among groups particularly in disaster or crisis situations.  相似文献   

8.
Social Network Discovery by Mining Spatio-Temporal Events   总被引:1,自引:0,他引:1  
Knowing patterns of relationship in a social network is very useful for law enforcement agencies to investigate collaborations among criminals, for businesses to exploit relationships to sell products, or for individuals who wish to network with others. After all, it is not just what you know, but also whom you know, that matters. However, finding out who is related to whom on a large scale is a complex problem. Asking every single individual would be impractical, given the huge number of individuals and the changing dynamics of relationships. Recent advancement in technology has allowed more data about activities of individuals to be collected. Such data may be mined to reveal associations between these individuals. Specifically, we focus on data having space and time elements, such as logs of people's movement over various locations or of their Internet activities at various cyber locations. Reasoning that individuals who are frequently found together are likely to be associated with each other, we mine from the data instances where several actors co-occur in space and time, presumably due to an underlying interaction. We call these spatio-temporal co-occurrences events, which we use to establish relationships between pairs of individuals. In this paper, we propose a model for constructing a social network from events, and provide an algorithm that mines these events from the data. Experiments on a real-life data tracking people's accesses to cyber locations have also yielded encouraging results. Hady W. Lauw is a graduate student at the School of Computer Engineering, Nanyang Technological University, Singapore. His research interests include spatio-temporal data mining, social network discovery, and link analyisis. He has a BEng in computer engineering from Nanyang Technological University. Ee-Peng Lim is an Associate Professor with the School of Computer Engineering, Nanyang Technological University, Singapore. He received his PhD from the University of Minnesota, Minneapolis in 1994 and B.Sc. in Computer Science from National University of Singapore. Ee-Peng's research interests include information integration, data/text/web mining, digital libraries, and wireless intelligence. He is currently an Associate Editor of the ACM Transactions on Information Systems (TOIS), International Journal of Digital Libraries (IJDL) and International Journal of Data Warehousing and Mining (IJDWM). He was the Program Co-Chair of the ACM/IEEE Joint Conference on Digital Libraries (JCDL 2004), and Conference/Program Co-Chairs of International Conference on Asian Digital Libraries (ICADL 2004). He has also served in the program committee of numerous international conferences. Dr Lim is a Senior Member of IEEE and a Member of ACM. HweeHwa Pang received the B.Sc.—with first class honors—and M.S. degrees from the National University of Singapore in 1989 and 1991, respectively, and the PhD degree from the University of Wisconsin at Madison in 1994, all in Computer Science. He is currently an Associate Professor at the Singapore Management University. His research interests include database management systems, data security and quality, operating systems, and multimedia servers. He has many years of hands-on experience in system implementation and project management. He has also participated in transferring some of his research results to industry. Teck-Tim Tan is an IT Manager (Operations) at the Centre for IT Services, Nanyang Technological University (NTU), Singapore. He administers and oversees NTU's campus-wide wireless LAN infrastructure which facilitates access to the University's vast IT resources and services practically anywhere on campus.  相似文献   

9.
On effectiveness of wiretap programs in mapping social networks   总被引:1,自引:0,他引:1  
Snowball sampling methods are known to be a biased toward highly connected actors and consequently produce core-periphery networks when these may not necessarily be present. This leads to a biased perception of the underlying network which can have negative policy consequences, as in the identification of terrorist networks. When snowball sampling is used, the potential overload of the information collection system is a distinct problem due to the exponential growth of the number of suspects to be monitored. In this paper, we focus on evaluating the effectiveness of a wiretapping program in terms of its ability to map the rapidly evolving networks within a covert organization. By running a series of simulation-based experiments, we are able to evaluate a broad spectrum of information gathering regimes based on a consistent set of criteria. We conclude by proposing a set of information gathering programs that achieve higher effectiveness then snowball sampling, and at a lower cost. Maksim Tsvetovat is an Assistant Professor at the Center for Social Complexity and department of Public and International Affairs at George Mason University, Fairfax, VA. He received his Ph.D. from the Computation, Organizations and Society program in the School of Computer Science, Carnegie Mellon University. His dissertation was centered on use of artificial intelligence techniques such as planning and semantic reasoning as a means of studying behavior and evolution of complex social networks, such as these of terrorist organizations. He received a Master of Science degree from University of Minnesota with a specialization in Artificial Intelligence and design of Multi-Agent Systems, and has also extensively studied organization theory and social science research methods. His research is centered on building high-fidelity simulations of social and organizational systems using concepts from distributed artificial intelligence and multi-agent systems. Other projects focus on social network analysis for mapping of internal corporate networks or study of covert and terrorist orgnaizations. Maksim’s vita and publications can be found on Kathleen M. Carley is a professor in the School of Computer Science at Carnegie Mellon University and the director of the center for Compuational Analysis of Social and Organizational Systems (CASOS) which has over 25 members, both students and research staff. Her research combines cognitive science, social networks and computer science to address complex social and organizational problems. Her specific research areas are dynamic network analysis, computational social and organization theory, adaptation and evolution, text mining, and the impact of telecommunication technologies and policy on communication, information diffusion, disease contagion and response within and among groups particularly in disaster or crisis situations. She and her lab have developed infrastructure tools for analyzing large scale dynamic networks and various multi-agent simulation systems. The infrastructure tools include ORA, a statistical toolkit for analyzing and visualizing multi-dimensional networks. ORA results are organized into reports that meet various needs such as the management report, the mental model report, and the intelligence report. Another tool is AutoMap, a text-mining systems for extracting semantic networks from texts and then cross-classifying them using an organizational ontology into the underlying social, knowledge, resource and task networks. Her simulation models meld multi-agent technology with network dynamics and empirical data. Three of the large-scale multi-agent network models she and the CASOS group have developed in the counter-terrorism area are: BioWar a city-scale dynamic-network agent-based model for understanding the spread of disease and illness due to natural epidemics, chemical spills, and weaponized biological attacks; DyNet a model of the change in covert networks, naturally and in response to attacks, under varying levels of information uncertainty; and RTE a model for examining state failure and the escalation of conflict at the city, state, nation, and international as changes occur within and among red, blue, and green forces. She is the founding co-editor with Al. Wallace of the journal Computational Organization Theory and has co-edited several books and written over 100 articles in the computational organizations and dynamic network area. Her publications can be found at: http://www.casos.cs.cmu.edu/bios/carley/publications.php  相似文献   

10.
Scholars engaged in the study of work group and organizational behavior are increasingly calling for the use of integrated methods in conducting research, including the wider adoption of computational models for generating and testing new theory. Our review of the state of modern computational modeling incorporating social structures reveals steady increases in the incorporation of dynamic, adaptive, and realistic behaviors of agents in network settings, yet exposes gaps that must be addressed in the next generation of organizational simulation systems. We compare 28 models according to more than two hundred evaluation criteria, ranging from simple representations of agent demographic and performance characteristics, to more richly defined instantiations of behavioral attributes, interaction with non-agent entities, model flexibility, communication channels, simulation types, knowledge, transactive memory, task complexity, and resource networks. Our survey assesses trends across the wide set of criteria, discusses practical applications, and proposes an agenda for future research and development. Michael J. Ashworth is a doctoral candidate in computational organization science at Carnegie Mellon University, where he conducts research on social, knowledge, and transactive memory networks along with their effects on group and organizational learning and performance. Practical outcomes of his work include improved understanding of the impact of technology, offshoring, and turnover on organizational performance. Mr. Ashworth has won several prestigious grants from the Sloan Foundation and the National Science Foundation to pursue his research on transactive memory networks. Journals in which his research has appeared include Journal of Mathematical Sociology, International Journal of Human Resource Management, and Proceedings of the International Conference on Information Systems. His recent work on managing human resource challenges in the electric power industry has been featured in the Wall Street Journal and on National Public Radio's ``Morning Edition.' Mr. Ashworth received his undergraduate degree in systems engineering from the Georgia Institute of Technology. Kathleen M. Carley is a professor at the Institute for Software Research International in the School of Computer Science at Carnegie Mellon University. She is the director of the center for Computational Analysis of Social and Organizational Systems (CASOS), a university-wide interdisciplinary center that brings together network analysis, computer science and organization science (www.casos.ece.cmu.edu). Prof. Carley carries out research that combines cognitive science, dynamic social networks, text processing, organizations, social and computer science in a variety of theoretical and applied venues. Her specific research areas are computational social and organization theory; dynamic social networks; multi-agent network models; group, organizational, and social adaptation, and evolution; statistical models for dynamic network analysis and evolution, computational text analysis, and the impact of telecommunication technologies on communication and information diffusion within and among groups. Prof. Carley has undergraduate degrees in economics and political science from MIT and a doctorate in sociology from Harvard University.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号