首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. I derive a posteriori error estimates for two-point boundary value problems and parabolic equations in one dimension based on interpolation error estimates. The interpolation error estimates are obtained from an extension of the error formula for the Lagrange interpolating polynomial in the case of symmetrically-spaced interpolation points. From this formula pointwise and seminorm a priori estimates of the interpolation error are derived. The interpolant in conjunction with the a priori estimates is used to obtain asymptotically exact a posteriori error estimates of the interpolation error. These a posteriori error estimates are extended to linear two-point boundary problems and parabolic equations. Computational results demonstrate the convergence of a posteriori error estimates and their effectiveness when combined with an hp-adaptive code for solving parabolic systems. Received April 17, 2000 / Revised version received September 25, 2000 / Published online May 30, 2001  相似文献   

2.
Summary The Runge-Kutta-Chebyshev method is ans-stage Runge-Kutta method designed for the explicit integration of stiff systems of ordinary differential equations originating from spatial discretization of parabolic partial differential equations (method of lines). The method possesses an extended real stability interval with a length proportional tos 2. The method can be applied withs arbitrarily large, which is an attractive feature due to the proportionality of withs 2. The involved stability property here is internal stability. Internal stability has to do with the propagation of errors over the stages within one single integration step. This internal stability property plays an important role in our examination of full convergence properties of a class of 1st and 2nd order schemes. Full convergence means convergence of the fully discrete solution to the solution of the partial differential equation upon simultaneous space-time grid refinement. For a model class of linear problems we prove convergence under the sole condition that the necessary time-step restriction for stability is satisfied. These error bounds are valid for anys and independent of the stiffness of the problem. Numerical examples are given to illustrate the theoretical results.Dedicated to Peter van der Houwen for his numerous contributions in the field of numerical integration of differential equations.Paper presented at the symposium Construction of Stable Numerical Methods for Differential and Integral Equations, held at CWI, March 29, 1989, in honor of Prof. Dr. P.J. van der Houwen to celebrate the twenty-fifth anniversary of his stay at CWI  相似文献   

3.
Summary We study the error due to the discretization in time of a nonlinear parabolic problem by a multistep method. Error estimates are obtained if the method is of the orderp (p>1) and stronglyA()-stable . The method is also applied to the Navier-Stokes equations in two dimensions.
  相似文献   

4.
《Quaestiones Mathematicae》2013,36(1):121-138
Abstract

In recent years, fitted operator finite difference methods (FOFDMs) have been developed for numerous types of singularly perturbed ordinary differential equations. The construction of most of these methods differed though the final outcome remained similar. The most crucial aspect was how the difference operator was designed to approximate the differential operator in question. Very often the approaches for constructing these operators had limited scope in the sense that it was difficult to extend them to solve even simple one-dimensional singularly perturbed partial differential equations. However, in some of our most recent work, we have successfully designed a class of FOFDMs and extended them to solve singularly perturbed time-dependent partial differential equations. In this paper, we design and analyze a robust FOFDM to solve a system of coupled singularly perturbed parabolic reaction-diffusion equations. We use the backward Euler method for the semi-discretization in time. An FOFDM is then developed to solve the resulting set of boundary value problems. The proposed method is analyzed for convergence. Our method is uniformly convergent with order one and two, respectively, in time and space, with respect to the perturbation parameters. Some numerical experiments supporting the theoretical investigations are also presented.  相似文献   

5.
《Quaestiones Mathematicae》2013,36(1-2):275-289
Abstract

Numerical solution of the wave equation in the form of close lower and upper bounds provides a secure a posteriori error estimate that can be used for efficient accuracy control. The method considered in this paper uses some monotone properties of the differential operator in the wave equation to construct bounds for the solution in the form of trigonometric polynomials of x. Aspects of the numerical implementation, the accuracy of the computed bounds and some numerical examples are discussed.  相似文献   

6.
Summary Consider the ODE (ordinary differential equation) that arises from a semi-discretization (discretization of the spatial coordinates) of a first order system form of a fourth order parabolic PDE (partial differential equation). We analyse the stability of the finite difference methods for this fourth order parabolic PDE that arise if one applies the hopscotch idea to this ODE.Often the error propagation of these methods can be represented by a three terms matrix-vector recursion in which the matrices have a certain anti-hermitian structure. We find a (uniform) expression for the stability bound (or error propagation bound) of this recursion in terms of the norms of the matrices. This result yields conditions under which these methods are strongly asymptotically stable (i.e. the stability is uniform both with respect to the spatial and the time stepsizes (tending to 0) and the time level (tending to infinity)), also in case the PDE has (spatial) variable coefficients. A convergence theorem follows immediately.  相似文献   

7.
Summary In this first of two papers, computable a posteriori estimates of the space discretization error in the finite element method of lines solution of parabolic equations are analyzed for time-independent space meshes. The effectiveness of the error estimator is related to conditions on the solution regularity, mesh family type, and asymptotic range for the mesh size. For clarity the results are limited to a model problem in which piecewise linear elements in one space dimension are used. The results extend straight-forwardly to systems of equations and higher order elements in one space dimension, while the higher dimensional case requires additional considerations. The theory presented here provides the basis for the analysis and adaptive construction of time-dependent space meshes, which is the subject of the second paper. Computational results show that the approach is practically very effective and suggest that it can be used for solving more general problems.The work was partially supported by ONR Contract N00014-77-C-0623  相似文献   

8.
Unconditionally stable explicit methods for parabolic equations   总被引:2,自引:0,他引:2  
Summary This paper discussesrational Runge-Kutta methods for stiff differential equations of high dimensions. These methods are explicit and in addition do not require the computation or storage of the Jacobian. A stability analysis (based onn-dimensional linear equations) is given. A second orderA 0-stable method with embedded error control is constructed and numerical results of stiff problems originating from linear and nonlinear parabolic equations are presented.  相似文献   

9.
In this work, the numerical approximation of a viscoelastic contact problem is studied. The classical Kelvin-Voigt constitutive law is employed, and contact is assumed with a deformable obstacle and modelled using the normal compliance condition. The variational formulation leads to a nonlinear parabolic variational equation. An existence and uniqueness result is recalled. Then, a fully discrete scheme is introduced, by using the finite element method to approximate the spatial variable and the implicit Euler scheme to discretize time derivatives. A priori error estimates recently proved for this problem are recalled. Then, an a posteriori error analysis is provided, extending some preliminary results obtained in the study of the heat equation and other parabolic equations. Upper and lower error bounds are proved. Finally, some numerical experiments are presented to demonstrate the accuracy and the numerical behaviour of the error estimates.  相似文献   

10.
This work concerns analysis and error estimates for optimal control problems related to implicit parabolic equations. The minimization of the tracking functional subject to implicit parabolic equations is examined. Existence of an optimal solution is proved and an optimality system of equations is derived. Semi-discrete (in space) error estimates for the finite element approximations of the optimality system are presented. These estimates are symmetric and applicable for higher-order discretizations. Finally, fully-discrete error estimates of arbitrarily high-order are presented based on a discontinuous Galerkin (in time) and conforming (in space) scheme. Two examples related to the Lagrangian moving mesh Galerkin formulation for the convection-diffusion equation are described.  相似文献   

11.
Two parallel domain decomposition procedures for solving initial-boundary value problems of parabolic partial differential equations are proposed. One is the extended D-D type algorithm, which extends the explicit/implicit conservative Galerkin domain decomposition procedures, given in [5], from a rectangle domain and its decomposition that consisted of a stripe of sub-rectangles into a general domain and its general decomposition with a net-like structure. An almost optimal error estimate, without the factor H−1/2 given in Dawson-Dupont’s error estimate, is proved. Another is the parallel domain decomposition algorithm of improved D-D type, in which an additional term is introduced to produce an approximation of an optimal error accuracy in L2-norm.  相似文献   

12.
ABSTRACT

A posteriori error estimates for semidiscrete finite element methods for a nonlinear parabolic initial-boundary value problem are considered. The error estimates are obtained by solving local parabolic or elliptic equations for corrections to the solution on each element. The convergence results improve previous results where unnecessary assumptions are imposed on the approximate solution and the elliptic projection of the exact solution.  相似文献   

13.
Summary The aim of this paper is to study contractivity properties of two locally one-dimensional splitting methods for non-linear, multi-space dimensional parabolic partial differential equations. The term contractivity means that perturbations shall not propagate in the course of the time integration process. By relating the locally one-dimensional methods with contractive integration formulas for ordinary differential systems it can be shown that the splitting methods define contractive numerical solutions for a large class of non-linear parabolic problems without restrictions on the size of the time step.  相似文献   

14.
Summary. We derive a posteriori error estimators for convection-diffusion equations with dominant convection. The estimators yield global upper and local lower bounds on the error measured in the energy norm such that the ratio of the upper and lower bounds only depends on the local mesh-Peclet number. The estimators are either based on the evaluation of local residuals or on the solution of discrete local Dirichlet or Neumann problems. Received February 10, 1997 / Revised version received November 4, 1997  相似文献   

15.
A posteriori error estimators for the Stokes equations   总被引:5,自引:0,他引:5  
Summary We present two a posteriori error estimators for the mini-element discretization of the Stokes equations. One is based on a suitable evaluation of the residual of the finite element solution. The other one is based on the solution of suitable local Stokes problems involving the residual of the finite element solution. Both estimators are globally upper and locally lower bounds for the error of the finite element discretization. Numerical examples show their efficiency both in estimating the error and in controlling an automatic, self-adaptive mesh-refinement process. The methods presented here can easily be generalized to the Navier-Stokes equations and to other discretization schemes.This work was accomplished at the Universität Heidelberg with the support of the Deutsche Forschungsgemeinschaft  相似文献   

16.
Summary By the so-called longitudinal method of lines the first boundary value problem for a parabolic differential equation is transformed into an initial value problem for a system of ordinary differential equations. In this paper, for a wide class of nonlinear parabolic differential equations the spatial derivatives occuring in the original problem are replaced by suitable differences such that monotonicity methods become applicable. A convergence theorem is proved. Special interest is devoted to the equationu t=f(x,t,u,u x,u xx), if the matrix of first order derivatives off(x,t,z,p,r) with respect tor may be estimated by a suitable Minkowski matrix.  相似文献   

17.
We present guaranteed and computable both sided error bounds for the discontinuous Galerkin (DG) approximations of elliptic problems. These estimates are derived in the full DG-norm on purely functional grounds by the analysis of the respective differential problem, and thus, are applicable to any qualified DG approximation. Based on the triangle inequality, the underlying approach has the following steps for a given DG approximation: (1) computing a conforming approximation in the energy space using the Oswald interpolation operator, and (2) application of the existing functional a posteriori error estimates to the conforming approximation. Various numerical examples with varying difficulty in computing the error bounds, from simple problems of polynomial-type analytic solution to problems with analytic solution having sharp peaks, or problems with jumps in the coefficients of the partial differential equation operator, are presented which confirm the efficiency and the robustness of the estimates.  相似文献   

18.
Summary It is shown that Liapunov functions may be used to obtain error bounds for approximate solutions of systems of ordinary differential equations. These error bounds may reflect the behaviour of the error more accurately than other bounds.  相似文献   

19.
Summary. In this paper, we describe a new technique for a posteriori error estimates suitable to parabolic and hyperbolic equations solved by the method of lines. One of our goals is to apply known estimates derived for elliptic problems to evolution equations. We apply the new technique to three distinct problems: a general nonlinear parabolic problem with a strongly monotonic elliptic operator, a linear nonstationary convection-diffusion problem, and a linear second order hyperbolic problem. The error is measured with the aid of the -norm in the space-time cylinder combined with a special time-weighted energy norm. Theory as well as computational results are presented. Received September 2, 1999 / Revised version received March 6, 2000 / Published online March 20, 2001  相似文献   

20.
Summary Convergence estimates are given forA()-stable multistep methods applied to singularly perturbed differential equations and nonlinear parabolic problems. The approach taken here combines perturbation arguments with frequency domain techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号