首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let Ω denote the class of connected plane bipartite graphs with no pendant edges. A finite face s of a graph GΩ is said to be a forcing face of G if the subgraph of G obtained by deleting all vertices of s together with their incident edges has exactly one perfect matching. This is a natural generalization of the concept of forcing hexagons in a hexagonal system introduced in Che and Chen [Forcing hexagons in hexagonal systems, MATCH Commun. Math. Comput. Chem. 56 (3) (2006) 649-668]. We prove that any connected plane bipartite graph with a forcing face is elementary. We also show that for any integers n and k with n?4 and n?k?0, there exists a plane elementary bipartite graph such that exactly k of the n finite faces of G are forcing. We then give a shorter proof for a recent result that a connected cubic plane bipartite graph G has at least two disjoint M-resonant faces for any perfect matching M of G, which is a main theorem in the paper [S. Bau, M.A. Henning, Matching transformation graphs of cubic bipartite plane graphs, Discrete Math. 262 (2003) 27-36]. As a corollary, any connected cubic plane bipartite graph has no forcing faces. Using the tool of Z-transformation graphs developed by Zhang et al. [Z-transformation graphs of perfect matchings of hexagonal systems, Discrete Math. 72 (1988) 405-415; Plane elementary bipartite graphs, Discrete Appl. Math. 105 (2000) 291-311], we characterize the plane elementary bipartite graphs whose finite faces are all forcing. We also obtain a necessary and sufficient condition for a finite face in a plane elementary bipartite graph to be forcing, which enables us to investigate the relationship between the existence of a forcing edge and the existence of a forcing face in a plane elementary bipartite graph, and find out that the former implies the latter but not vice versa. Moreover, we characterize the plane bipartite graphs that can be turned to have all finite faces forcing by subdivisions.  相似文献   

2.
For a finite undirected graph G=(V,E) and positive integer k≥1, an edge set ME is a distance-k matching if the pairwise distance of edges in M is at least k in G. For k=1, this gives the usual notion of matching in graphs, and for general k≥1, distance-k matchings were called k-separated matchings by Stockmeyer and Vazirani. The special case k=2 has been studied under the names induced matching (i.e., a matching which forms an induced subgraph in G) by Cameron and strong matching by Golumbic and Laskar in various papers.Finding a maximum induced matching is NP-complete even on very restricted bipartite graphs and on claw-free graphs but it can be done efficiently on various classes of graphs such as chordal graphs, based on the fact that an induced matching in G corresponds to an independent vertex set in the square L(G)2 of the line graph L(G) of G which, by a result of Cameron, is chordal for any chordal graph G.We show that, unlike for k=2, for a chordal graph G, L(G)3 is not necessarily chordal, and finding a maximum distance-3 matching, and more generally, finding a maximum distance-(2k+1) matching for k≥1, remains NP-complete on chordal graphs. For strongly chordal graphs and interval graphs, however, the maximum distance-k matching problem can be solved in polynomial time for every k≥1. Moreover, we obtain various new results for maximum induced matchings on subclasses of claw-free graphs.  相似文献   

3.
Pavol Hell 《Discrete Mathematics》2009,309(18):5703-5373
A sequence 〈d1,d2,…,dn〉 of non-negative integers is graphical if it is the degree sequence of some graph, that is, there exists a graph G on n vertices whose ith vertex has degree di, for 1≤in. The notion of a graphical sequence has a natural reformulation and generalization in terms of factors of complete graphs.If H=(V,E) is a graph and g and f are integer-valued functions on the vertex set V, then a (g,f)-factor of H is a subgraph G=(V,F) of H whose degree at each vertex vV lies in the interval [g(v),f(v)]. Thus, a (0,1)-factor is just a matching of H and a (1, 1)-factor is a perfect matching of H. If H is complete then a (g,f)-factor realizes a degree sequence that is consistent with the sequence of intervals 〈[g(v1),f(v1)],[g(v2),f(v2)],…,[g(vn),f(vn)]〉.Graphical sequences have been extensively studied and admit several elegant characterizations. We are interested in extending these characterizations to non-graphical sequences by introducing a natural measure of “near-graphical”. We do this in the context of minimally deficient (g,f)-factors of complete graphs. Our main result is a simple linear-time greedy algorithm for constructing minimally deficient (g,f)-factors in complete graphs that generalizes the method of Hakimi and Havel (for constructing (f,f)-factors in complete graphs, when possible). It has the added advantage of producing a certificate of minimum deficiency (through a generalization of the Erdös-Gallai characterization of (f,f)-factors in complete graphs) at no additional cost.  相似文献   

4.
An edge e of a k-connected graph G is said to be a removable edge if G?e is still k-connected. A k-connected graph G is said to be a quasi (k+1)-connected if G has no nontrivial k-separator. The existence of removable edges of 3-connected and 4-connected graphs and some properties of quasi k-connected graphs have been investigated [D.A. Holton, B. Jackson, A. Saito, N.C. Wormale, Removable edges in 3-connected graphs, J. Graph Theory 14(4) (1990) 465-473; H. Jiang, J. Su, Minimum degree of minimally quasi (k+1)-connected graphs, J. Math. Study 35 (2002) 187-193; T. Politof, A. Satyanarayana, Minors of quasi 4-connected graphs, Discrete Math. 126 (1994) 245-256; T. Politof, A. Satyanarayana, The structure of quasi 4-connected graphs, Discrete Math. 161 (1996) 217-228; J. Su, The number of removable edges in 3-connected graphs, J. Combin. Theory Ser. B 75(1) (1999) 74-87; J. Yin, Removable edges and constructions of 4-connected graphs, J. Systems Sci. Math. Sci. 19(4) (1999) 434-438]. In this paper, we first investigate the relation between quasi connectivity and removable edges. Based on the relation, the existence of removable edges in k-connected graphs (k?5) is investigated. It is proved that a 5-connected graph has no removable edge if and only if it is isomorphic to K6. For a k-connected graph G such that end vertices of any edge of G have at most k-3 common adjacent vertices, it is also proved that G has a removable edge. Consequently, a recursive construction method of 5-connected graphs is established, that is, any 5-connected graph can be obtained from K6 by a number of θ+-operations. We conjecture that, if k is even, a k-connected graph G without removable edge is isomorphic to either Kk+1 or the graph Hk/2+1 obtained from Kk+2 by removing k/2+1 disjoint edges, and, if k is odd, G is isomorphic to Kk+1.  相似文献   

5.
A set H of disjoint faces of a plane bipartite graph G is a resonant pattern if G has a perfect matching M such that the boundary of each face in H is an M-alternating cycle. An elementary result was obtained [Discrete Appl. Math. 105 (2000) 291-311]: a plane bipartite graph is 1-extendable if and only if every face forms a resonant pattern. In this paper we show that for a 2-extendable plane bipartite graph, any pair of disjoint faces form a resonant pattern, and the converse does not necessarily hold. As an application, we show that all boron-nitrogen (B-N) fullerene graphs are 2-resonant, and construct all the 3-resonant B-N fullerene graphs, which are all k-resonant for any positive integer k. Here a B-N fullerene graph is a plane cubic graph with only square and hexagonal faces, and a B-N fullerene graph is k-resonant if any disjoint faces form a resonant pattern. Finally, the cell polynomials of 3-resonant B-N fullerene graphs are computed.  相似文献   

6.
S. Mishra  S.B. Rao 《Discrete Mathematics》2006,306(14):1586-1594
In this paper we consider a graph optimization problem called minimum monopoly problem, in which it is required to find a minimum cardinality set SV, such that, for each uV, |N[u]∩S|?|N[u]|/2 in a given graph G=(V,E). We show that this optimization problem does not have a polynomial-time approximation scheme for k-regular graphs (k?5), unless P=NP. We show this by establishing two L-reductions (an approximation preserving reduction) from minimum dominating set problem for k-regular graphs to minimum monopoly problem for 2k-regular graphs and to minimum monopoly problem for (2k-1)-regular graphs, where k?3. We also show that, for tree graphs, a minimum monopoly set can be computed in linear time.  相似文献   

7.
We investigate crossing minimization problems for a set of permutations, where a crossing expresses a disarrangement between elements. The goal is a common permutation π which minimizes the number of crossings. In voting and social science theory this is known as the Kemeny optimal aggregation problem minimizing the Kendall-τ distance. This rank aggregation problem can be phrased as a one-sided two-layer crossing minimization problem for a series of bipartite graphs or for an edge coloured bipartite graph, where crossings are counted only for monochromatic edges. We contribute the max version of the crossing minimization problem, which attempts to minimize the discrimination against any permutation. As our results, we correct the construction from [C. Dwork, R. Kumar, M. Noar, D. Sivakumar, Rank aggregation methods for the Web, Proc. WWW10 (2001) 613-622] and prove the NP-hardness of the common crossing minimization problem for k=4 permutations. Then we establish a 2−2/k-approximation, improving the previous factor of 2. The max version is shown NP-hard for every k≥4, and there is a 2-approximation. Both approximations are optimal, if the common permutation is selected from the given ones. For two permutations crossing minimization is solved by inspecting the drawings, whereas it remains open for three permutations.  相似文献   

8.
Saihua Liu 《Discrete Mathematics》2010,310(21):2790-2800
A benzenoid system G is k-resonant if any set F of no more than k disjoint hexagons is a resonant pattern, i.e, GF has a perfect matching. In 1990’s M. Zheng constructed the 3-resonant benzenoid systems and showed that they are maximally resonant, that is, they are k-resonant for all k≥1. Recently, the equivalence of 3-resonance and maximal resonance has been shown to be valid also for coronoid systems, carbon nanotubes, polyhexes in tori and Klein bottles, and fullerene graphs. So our main problem is to investigate the extent of graphs possessing this interesting property. In this paper, by replacing the above hexagons with even faces, we define k-resonance of graphs in surfaces, possibly with boundary, in a unified way. Some exceptions exist. For plane polygonal systems tessellated with polygons of even size at least six such that all inner vertices have the same degree three and the others have degree two or three, we show that such 3-resonant polygonal systems are indeed maximally resonant. They can be constructed by gluing and lapping operations on three types of basic graphs.  相似文献   

9.
J.A. Gallian has proved [J.A. Gallian, Labeling prisms and prism related graphs, Congr. Numer. 59 (1987) 89-100] that every cubic graph M2k obtainable from a 2k-cycle by adding its k diameters (the so-called Moebius Ladder of order 2k) is graceful. Here, in the case of k even, we propose a new graceful labeling that besides being simpler than Gallian’s one is able to give, at the same time, a graceful labeling of the prism of order 2k. Most importantly in the case of k odd, namely in the bipartite case, we prove that M2k also admits an α-labeling. This implies that there exists a cyclic decomposition of the complete graph K6kt+1 into copies of M2k for every pair of positive integers k and t with k odd.In some cases we are able to give such decompositions also when k is even. Apart from the case of t=1 that is an obvious consequence of the gracefulness of M2k, this happens, for instance, when k≡2 (mod 4) and 6kt+1 is a prime.  相似文献   

10.
A graph G is induced matching extendable, shortly IM-extendable, if every induced matching of G is included in a perfect matching of G. For a nonnegative integer k, a graph G is called a k-edge-deletable IM-extendable graph, if, for every FE(G) with |F|=k, GF is IM-extendable. In this paper, we characterize the k-edge-deletable IM-extendable graphs with minimum number of edges. We show that, for a positive integer k, if G is ak-edge-deletable IM-extendable graph on 2n vertices, then |E(G)|≥(k+2)n; furthermore, the equality holds if and only if either GKk+2,k+2, or k=4r−2 for some integer r≥3 and GC5[N2r], where N2r is the empty graph on 2r vertices and C5[N2r] is the graph obtained from C5 by replacing each vertex with a graph isomorphic to N2r.  相似文献   

11.
A graph G is said to be k-γ-critical if the size of any minimum dominating set of vertices is k, but if any edge is added to G the resulting graph can be dominated with k-1 vertices. The structure of k-γ-critical graphs remains far from completely understood when k?3.A graph G is factor-critical if G-v has a perfect matching for every vertex vV(G) and is bicritical if G-u-v has a perfect matching for every pair of distinct vertices u,vV(G). More generally, a graph is said to be k-factor-critical if G-S has a perfect matching for every set S of k vertices in G. In three previous papers [N. Ananchuen, M.D. Plummer, Some results related to the toughness of 3-domination-critical graphs, Discrete Math. 272 (2003) 5-15; N. Ananchuen, M.D. Plummer, Matching properties in domination critical graphs, Discrete Math. 277 (2004) 1-13; N. Ananchuen, M.D. Plummer, Some results related to the toughness of 3-domination-critical graphs. II. Utilitas Math. 70 (2006) 11-32], we explored the toughness of 3-γ-critical graphs and some of their matching properties. In particular, we obtained some properties which are sufficient for a 3-γ-critical graph to be factor-critical and, respectively, bicritical. In the present work, we obtain similar results for k-factor-critical graphs when k=3.  相似文献   

12.
Kenta Ozeki 《Discrete Mathematics》2009,309(13):4266-4269
Win, in 1975, and Jackson and Wormald, in 1990, found the best sufficient conditions on the degree sum of a graph to guarantee the properties of “having a k-tree” and “having a k-walk”, respectively. The property of “being prism hamiltonian” is an intermediate property between “having a 2-tree” and “having a 2-walk”. Thus, it is natural to ask what is the best degree sum condition for graphs to be prism hamiltonian. As an answer to this problem, in this paper, we show that a connected graph G of order n with σ3(G)≥n is prism hamiltonian. The degree sum condition “σ3(G)≥n” is best possible.  相似文献   

13.
T?naz Ekim 《Discrete Mathematics》2009,309(19):5849-5856
Given integers j and k and a graph G, we consider partitions of the vertex set of G into j+k parts where j of these parts induce empty graphs and the remaining k induce cliques. If such a partition exists, we say G is a (j,k)-graph. For a fixed j and k we consider the maximum order n where every graph of order n is a (j,k)-graph. The split-chromatic number of G is the minimum j where G is a (j,j)-graph. Further, the cochromatic number is the minimum j+k where G is a (j,k)-graph. We examine some relations between cochromatic, split-chromatic and chromatic numbers. We also consider some computational questions related to chordal graphs and cographs.  相似文献   

14.
Let Y be a subset of real numbers. A Y-dominating function of a graph G=(V,E) is a function f:VY such that for all vertices vV, where NG[v]={v}∪{u|(u,v)∈E}. Let for any subset S of V and let f(V) be the weight of f. The Y-domination problem is to find a Y-dominating function of minimum weight for a graph G=(V,E). In this paper, we study the variations of Y-domination such as {k}-domination, k-tuple domination, signed domination, and minus domination for some classes of graphs. We give formulas to compute the {k}-domination, k-tuple domination, signed domination, and minus domination numbers of paths, cycles, n-fans, n-wheels, n-pans, and n-suns. Besides, we present a unified approach to these four problems on strongly chordal graphs. Notice that trees, block graphs, interval graphs, and directed path graphs are subclasses of strongly chordal graphs. This paper also gives complexity results for the problems on doubly chordal graphs, dually chordal graphs, bipartite planar graphs, chordal bipartite graphs, and planar graphs.  相似文献   

15.
Wensong Lin 《Discrete Mathematics》2008,308(16):3565-3573
The generalized Mycielskians of graphs (also known as cones over graphs) are the natural generalization of the Mycielskians of graphs (which were first introduced by Mycielski in 1955). Given a graph G and any integer p?0, one can transform G into a new graph μp(G), the p-Mycielskian of G. In this paper, we study the kth chromatic numbers χk of Mycielskians and generalized Mycielskians of graphs. We show that χk(G)+1?χk(μ(G))?χk(G)+k, where both upper and lower bounds are attainable. We then investigate the kth chromatic number of Mycielskians of cycles and determine the kth chromatic number of p-Mycielskian of a complete graph Kn for any integers k?1, p?0 and n?2. Finally, we prove that if a graph G is a/b-colorable then the p-Mycielskian of G, μp(G), is (at+bp+1)/bt-colorable, where . And thus obtain graphs G with m(G) grows exponentially with the order of G, where m(G) is the minimal denominator of a a/b-coloring of G with χf(G)=a/b.  相似文献   

16.
Let f be a graph function which assigns to each graph H a non-negative integer f(H)≤|V(H)|. The f-game chromatic number of a graph G is defined through a two-person game. Let X be a set of colours. Two players, Alice and Bob, take turns colouring the vertices of G with colours from X. A partial colouring c of G is legal (with respect to graph function f) if for any subgraph H of G, the sum of the number of colours used in H and the number of uncoloured vertices of H is at least f(H). Both Alice and Bob must colour legally (i.e., the partial colouring produced needs to be legal). The game ends if either all the vertices are coloured or there are uncoloured vertices with no legal colour. In the former case, Alice wins the game. In the latter case, Bob wins the game. The f-game chromatic number of G, χg(f,G), is the least number of colours that the colour set X needs to contain so that Alice has a winning strategy. Let be the graph function defined as , for any n≥3 and otherwise. Then is called the acyclic game chromatic number of G. In this paper, we prove that any outerplanar graph G has acyclic game chromatic number at most 7. For any integer k, let ?k be the graph function defined as ?k(K2)=2 and ?k(Pk)=3 (Pk is the path on k vertices) and ?k(H)=0 otherwise. This paper proves that if k≥8 then for any tree T, χg(?k,T)≤9. On the other hand, if k≤6, then for any integer n, there is a tree T such that χg(?k,T)≥n.  相似文献   

17.
We introduce the incidence game chromatic number which unifies the ideas of game chromatic number and incidence coloring number of an undirected graph. For k-degenerate graphs with maximum degree Δ, the upper bound 2Δ+4k−2 for the incidence game chromatic number is given. If Δ≥5k, we improve this bound to the value 2Δ+3k−1. We also determine the exact incidence game chromatic number of cycles, stars and sufficiently large wheels and obtain the lower bound for the incidence game chromatic number of graphs of maximum degree Δ.  相似文献   

18.
Recently, it has been shown in a series of works that the representation of graphs by Ordered Binary Decision Diagrams (OBDDs) often leads to good algorithmic behavior. However, the question for which graph classes an OBDD representation is advantageous, has not been investigated, yet. In this paper, the space requirements for the OBDD representation of certain graph classes, specifically cographs, several types of graphs with few P4s, unit interval graphs, interval graphs and bipartite graphs are investigated. Upper and lower bounds are proven for all these graph classes and it is shown that in most (but not all) cases a representation of the graphs by OBDDs is advantageous with respect to space requirements.  相似文献   

19.
Given an undirected graph with edge weights, we are asked to find an orientation, that is, an assignment of a direction to each edge, so as to minimize the weighted maximum outdegree in the resulted directed graph. The problem is called MMO, and is a restricted variant of the well-known minimum makespan problem. As in previous studies, it is shown that MMO is in P for trees, weak NP-hard for planar bipartite graphs, and strong NP-hard for general graphs. There are still gaps between those graph classes. The objective of this paper is to show tighter thresholds of complexity: We show that MMO is (i) in P for cactus graphs, (ii) weakly NP-hard for outerplanar graphs, and also (iii) strongly NP-hard for graphs which are both planar and bipartite. This implies the NP-hardness for P4-bipartite, diamond-free or house-free graphs, each of which is a superclass of cactus. We also show (iv) the NP-hardness for series-parallel graphs and multi-outerplanar graphs, and (v) present a pseudo-polynomial time algorithm for graphs with bounded treewidth.  相似文献   

20.
An independent set of a graph G is a set of pairwise non-adjacent vertices. Let α(G) denote the cardinality of a maximum independent set and fs(G) for 0≤sα(G) denote the number of independent sets of s vertices. The independence polynomial defined first by Gutman and Harary has been the focus of considerable research recently. Wingard bounded the coefficients fs(T) for trees T with n vertices: for s≥2. We generalize this result to bounds for a very large class of graphs, maximal k-degenerate graphs, a class which includes all k-trees. Additionally, we characterize all instances where our bounds are achieved, and determine exactly the independence polynomials of several classes of k-tree related graphs. Our main theorems generalize several related results known before.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号