首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
《数学季刊》2016,(2):147-154
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) 6= C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K8,n are discussed in this paper. Particularly, the VDIET chromatic number of K8,n are obtained.  相似文献   

2.
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) ≠ C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χ_(vt)~(ie) (G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K_(8,n)are discussed in this paper. Particularly, the VDIET chromatic number of K_(8,n) are obtained.  相似文献   

3.
A 2-graph is a hypergraph with edge sizes of at most two. A regular 2-graph is said to be minimal if it does not contain a proper regular factor. Let f2(n) be the maximum value of degrees over all minimal regular 2-graphs of n vertices. In this paper, we provide a structure property of minimal regular 2-graphs, and consequently, prove that f2(n) = n 3-i/3, where 1 ≤ i ≤ 6, i ≡ n (mod 6) and n ≥ 7, which solves a conjecture posed by Fan, Liu, Wu and Wong. As applications in graph theory, we are able to characterize unfactorable regular graphs and provide the best possible factor existence theorem on degree conditions. Moreover, fa(n) and the minimal 2-graphs can be used in the universal switch box designs, which originally motivated this study.  相似文献   

4.
A signed(res. signed total) Roman dominating function, SRDF(res.STRDF) for short, of a graph G =(V, E) is a function f : V → {-1, 1, 2} satisfying the conditions that(i)∑v∈N[v]f(v) ≥ 1(res.∑v∈N(v)f(v) ≥ 1) for any v ∈ V, where N [v] is the closed neighborhood and N(v) is the neighborhood of v, and(ii) every vertex v for which f(v) =-1 is adjacent to a vertex u for which f(u) = 2. The weight of a SRDF(res. STRDF) is the sum of its function values over all vertices.The signed(res. signed total) Roman domination number of G is the minimum weight among all signed(res. signed total) Roman dominating functions of G. In this paper,we compute the exact values of the signed(res. signed total) Roman domination numbers of complete bipartite graphs and wheels.  相似文献   

5.
In Gao’s previous work, the authors determined several degree conditions of a graph which admits fractional factor in particular settings. It was revealed that these degree conditions are tight if b = f(x) = g(x) = a for all vertices x in G. In this paper, we continue to discuss these degree conditions for admitting fractional factor in the setting that several vertices and edges are removed and there is a difference Δ between g(x) and f(x) for every vertex x in G. These obtained new degree conditions reformulate Gao’s previous conclusions, and show how Δ acts in the results. Furthermore,counterexamples are structured to reveal the sharpness of degree conditions in the setting f(x) =g(x) + Δ.  相似文献   

6.
§ 1  IntroductionAll graphs considered in this paper are finite,simple plane graphs.G=(V,E,F)denotes a plane graph,with V,E and F being the set of vertices,edges and faces of G,respectively.Two vertices u and v are adjacent,denoted by uv∈E,if there is an edge in Ejoining them.A vertex u is incident with an edge e if u is an endvertex of e.Two faces aresaid to be adjacent if they share a common edge.We use b(f) to denote the boundary of aface f.A face is incident with all vertices and e…  相似文献   

7.
Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u)=C(v) for any two different vertices u and v of V (G), then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G), and is called the VDIET chromatic number of G. We get the VDIET chromatic numbers of cycles and wheels, and propose related conjectures in this paper.  相似文献   

8.
Let G be a simple graph.An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color.Let C(u) be the set of colors of vertex u and edges incident to u under f.For an IE-total coloring f of G using k colors,if C(u)=C(v) for any two different vertices u and v of V(G),then f is called a k-vertex-distinguishing IE-total-coloring of G,or a k-VDIET coloring of G for short.The minimum number of colors required for a VDIET coloring of G is denoted by χ ie vt (G),and it is called the VDIET chromatic number of G.We will give VDIET chromatic numbers for complete bipartite graph K4,n (n≥4),K n,n (5≤ n ≤ 21) in this article.  相似文献   

9.
Let G be a simple graph.An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color.Let C(u) be the set of colors of vertex u and edges incident to u under f.For an IE-total coloring f of G using k colors,if C(u)=C(v) for any two different vertices u and v of V(G),then f is called a k-vertex-distinguishing IE-total-coloring of G,or a k-VDIET coloring of G for short.The minimum number of colors required for a VDIET coloring of G is denoted by χ ie vt (G),and it is called the VDIET chromatic number of G.We will give VDIET chromatic numbers for complete bipartite graph K4,n (n≥4),K n,n (5≤ n ≤ 21) in this article.  相似文献   

10.
An f-coloring of a graph G is an edge-coloring of G such that each color appears at each vertex v∈V(G) at most f(v) times.The f-core of G is the subgraph of G induced by the vertices v of degree d(v)=f(v) maxv∈V(G){ d(v)/f(v) }.In this paper,we find some necessary conditions for a simple graph,whose f-core has maximum degree two,to be of class 2 for f-colorings.  相似文献   

11.
A 2-cell embedding f : X → S of a graph X into a closed orientable surface S can be described combinatorially by a pair M = (X;ρ ) called a map, where ρ is a product of disjoint cycle permutations each of which is the permutation of the arc set of X initiated at the same vertex following the orientation of S . It is well known that the automorphism group of M acts semi-regularly on the arc set of X and if the action is regular, then the map M and the embedding f are called regular. Let p and q be primes. Du et al. [J. Algebraic Combin., 19, 123-141 (2004)] classified the regular maps of graphs of order pq . In this paper all pairwise non-isomorphic regular maps of graphs of order 4 p are constructed explicitly and the genera of such regular maps are computed. As a result, there are twelve sporadic and six infinite families of regular maps of graphs of order 4 p ; two of the infinite families are regular maps with the complete bipartite graphs K2p,2p as underlying graphs and the other four infinite families are regular balanced Cayley maps on the groups Z4p , Z22 × Zp and D4p .  相似文献   

12.
We define transversal tropical triangles (affine and projective) and characterize them via six inequalities to be satisfied by the coordinates of the vertices. We prove that the vertices of a transversal tropical triangle are tropically independent and they tropically span a classical hexagon whose sides have slopes ∞, 0, 1. Using this classical hexagon, we determine a parameter space for transversal tropical triangles. The coordinates of the vertices of a transversal tropical triangle determine a tropically regular matrix. Triangulations of the tropical plane are obtained.  相似文献   

13.
Let simple graph G=(V, E),V=n,E=m. If there exists a path containing i vertices connecting u and v in V, then property P_i(u,v) will be said to told.For 2≤i≤n, let S_i be the set of all unordered pairs of distinct u and v for which property P_i(u.v) holds, and Let S_1 be the set of all unordered pairs of vertices which are not connected by any path. A graph G satisfies property P_i if |S_i|=n(n-1)/2.  相似文献   

14.
Let G = (V,E) be a graph without isolated vertices.A set S V is a domination set of G if every vertex in V - S is adjacent to a vertex in S,that is N[S] = V.The domination number of G,denoted by γ(G),is the minimum cardinality of a domination set of G.A set S C V is a paired-domination set of G if S is a domination set of G and the induced subgraph G[S] has a perfect matching.The paired-domination number,denoted by γpr(G),is defined to be the minimum cardinality of a paired-domination set S in G.A subset S V is a power domination set of G if all vertices of V can be observed recursively by the following rules: (i) all vertices in N[S] are observed initially,and (ii) if an observed vertex u has all neighbors observed except one neighbor v,then v is observed (by u).The power domination number,denoted by γp(G),is the minimum cardinality of a power domination set of G.In this paper,the constructive characterizations for trees with γp = γ and γpr = γp are provided respectively.  相似文献   

15.
A maximum(v,G,λ)-PD and a minimum(v,G,λ)-CD are studied for 2 graphs of 6 vertices and 7 edges.By means of difference method and holey graph design,we obtain the result:there exists a(v,Gi,λ)-OPD(OCD) for v ≡ 2,3,4,5,6(mod 7),λ ≥ 1,i = 1,2.  相似文献   

16.
For positive integers j and k with j ≥ k, an L(j, k)-labeling of a graph G is an assignment of nonnegative integers to V(G) such that the difference between labels of adjacent vertices is at least j, and the difference between labels of vertices that are distance two apart is at least k. The span of an L(j, k)-labeling of a graph G is the difference between the maximum and minimum integers it uses. The λj, k-number of G is the minimum span taken over all L(j, k)-labelings of G. An m-(j, k)-circular labeling of a graph G is a function f : V(G) →{0, 1, 2,..., m - 1} such that |f(u) - f(v)|m ≥ j if u and v are adjacent; and |f(u) - f(v)|m 〉 k ifu and v are at distance two, where |x|m = min{|xl|, m-|x|}. The minimum integer m such that there exists an m-(j, k)-circular labeling of G is called the σj,k-number of G and is denoted by σj,k(G). This paper determines the σ2,1-number of the Cartesian product of any three complete graphs.  相似文献   

17.
In conversation I was told by Professor R.Brigham the following conjecture [1].Let G(n) be a graph of n vertices.Denote by f(G(n))=t the smallest integer for which the vertices of G(n) can be covered by t cliques. Denote further by h(G(n)) =l the largest integer for which there are l edges of our G(n) no two of Which are in the same clique.Clearly h(G(n)) can be much larger than f(G(n))e.g.if n=2m and G(n) is the complete bipartite graph of m white and m black vertices.Then l(G(n))=m and l(G(n))=m~2. It was conjectured that if G(n).has no isolated vertices then  相似文献   

18.
A set D of vertices in a graph G = (V, E) is a locating-dominating set (LDS) if for every two vertices u, v of V / D the sets N(u) ∩D and N(v) ∩ D are non-empty and different. The locating-domination number γL(G) is the minimum cardinality of an LDS of G, and the upper-locating domination number FL(G) is the maximum cardinality of a minimal LDS of G. In the present paper, methods for determining the exact values of the upper locating-domination numbers of cycles are provided.  相似文献   

19.
Let G =(V,E) be a graph without isolated vertices.A set S  V is a domination set of G if every vertex in V -S is adjacent to a vertex in S,that is N[S] = V .The domination number of G,denoted by γ(G),is the minimum cardinality of a domination set of G.A set S  V is a paired-domination set of G if S is a domination set of G and the induced subgraph G[S]has a perfect matching.The paired-domination number,denoted by γpr(G),is defined to be the minimum cardinality of a paired-domination set S in G.A subset S  V is a power domination set of G if all vertices of V can be observed recursively by the following rules:(i) all vertices in N[S] are observed initially,and(ii) if an observed vertex u has all neighbors observed except one neighbor v,then v is observed(by u).The power domination number,denoted by γp(G),is the minimum cardinality of a power domination set of G.In this paper,the constructive characterizations for trees with γp = γ and γpr = γp are provided respectively.  相似文献   

20.
Given a distribution of pebbles on the vertices of a connected graph G, a pebbling move on G consists of taking two pebbles off one vertex and placing one on an adjacent vertex. The pebbling number f(G) is the smallest number m such that for every distribution of m pebbles and every vertex v,a pebble can be moved to v. A graph G is said to have the 2-pebbling property if for any distribution with more than 2f(G) q pebbles, where q is the number of vertices with at least one pebble, it is possible,using pebbling moves, to get two pebbles to any vertex. Snevily conjectured that G(s,t) has the 2-pebbling property, where G(s, t) is a bipartite graph with partite sets of size s and t (s ≥ t). Similarly, the-pebbling number f (G) is the smallest number m such that for every distribution of m pebbles and every vertex v, pebbles can be moved to v. Herscovici et al. conjectured that f(G) ≤ 1.5n + 8-6 for the graph G with diameter 3, where n = |V (G)|. In this paper, we prove that if s ≥ 15 and G(s, t) has minimum degree at least (s+1)/ 2 , then f (G(s, t)) = s + t, G(s, t) has the 2-pebbling property and f (G(s, t)) ≤ s + t + 8(-1). In other words, we extend a result due to Czygrinow and Hurlbert, and show that the above Snevily conjecture and Herscovici et al. conjecture are true for G(s, t) with s ≥ 15 and minimum degree at least (s+1)/ 2 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号