首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 702 毫秒
1.
A Dirichlet problem is considered in a three-dimensional domain filled with a piecewise homogeneous medium. The uniqueness of its solution is proved. A system of Fredholm boundary integral equations of the second kind is constructed using the method of surface potentials, and a system of boundary integral equations of the first kind is derived directly from Green’s identity. A technique for the numerical solution of integral equations is proposed, and results of numerical experiments are presented.  相似文献   

2.
The main difficulty in numerical solution of integral equations of electrodynamics is associated with the need to solve a high-order system of linear equations with a dense matrix. It is therefore relevant to develop numerical methods that lead to linear equation systems of lower order at the cost of more complex evaluation of the coefficients. In this article we propose a method for solving linear equations of electrodynamics which is a modification of the integral current method. The main distinctive feature of the proposed method is double integration of the electric Green’s tensor in the process of algebraization of the original integral equation. The solutions of the system of linear equations are thus integral means of the electric field inside the anomaly constructed by the proposed transformation formula. We prove convergence and derive error bounds for both the solution of the integral equation and the electromagnetic field components evaluated from approximate transformation formulas.  相似文献   

3.
The problem on the reflection of the field of a plane H-polarized three-dimensional electromagnetic wave from a perfectly conducting interface between media which contains a local perfectly conducting inhomogeneity is considered. To construct a numerical algorithm, the boundary value problem for the system of Maxwell equations in an infinite domain with irregular boundary is reduced to a system of singular integral equations, which is solved by the approximation–collocation method. The elements of the resulting complex matrix are calculated by a specially developed algorithm. The solution of the system of singular integral equations is used to obtain an integral representation for the reflected electromagnetic field and computational formulas for the directional diagram of the reflected electromagnetic field in the far region.  相似文献   

4.
The article investigates the reconstruction of the internal boundary of a two-dimensional region in the two-dimensional initial–boundary-value problem for the homogeneous heat equation. The initial values for the determination of the internal boundary are provided by a boundary condition of second kind on the external boundary and the solution of the initial–boundary-value problem at finitely many points inside the region. The inverse problem is reduced to solving a system of integral equations nonlinear in the function describing the sought boundary. An iterative numerical procedure is proposed involving linearization of integral equations.  相似文献   

5.
A 3D problem of reflection of a plane electromagnetic wave by a local impedance section of a wavy surface is considered. The boundary value problem for the system of Maxwell’s equations in a region with an irregular boundary is reduced to solution of systems of hypersingular integral equations. A numerical algorithm is proposed for solution of these systems. Results of numerical computations are presented.  相似文献   

6.
It is shown that hypersingular integral equations may be used for numerical solution of diffraction problems for electromagnetic waves on magneto-dielectric bodies. The problem is reducible to surface equations with simple kernels, which permit applying numerical schemes previously developed for ideally conducting objects. Examples of numerical solution of diffraction problems on circular or square dielectric cylinders obtained from equations of different kinds are reported. __________ Translated from Prikladnaya Matematika i Informatika, No. 20, pp. 5–15, 2005.  相似文献   

7.
In this paper we propose and analyse numerical methods for the approximation of the solution of Helmholtz transmission problems in the half plane. The problems we deal with arise from the study of some models in photothermal science. The solutions to the problem are represented as single layer potentials and an equivalent system of boundary integral equations is derived. We then give abstract necessary and sufficient conditions for convergence of Petrov–Galerkin discretizations of the boundary integral system and show for three different cases that these conditions are satisfied. We extend the results to other situations not related to thermal science and to non-smooth interfaces. Finally, we propose a simple full discretization of a Petrov–Galerkin scheme with periodic spline spaces and show some numerical experiments.  相似文献   

8.
The inverse Sturm‐Liouville problem on a half‐line is considered. With the aid of a Fourier‐Legendre series representation of the transmutation integral kernel and the Gel'fand‐Levitan equation, the numerical solution of the problem is reduced to a system of linear algebraic equations. The potential q is recovered from the first coefficient of the Fourier‐Legendre series. The resulting numerical method is direct and simple. The results of the numerical experiments are presented.  相似文献   

9.
The scattering of a three-dimensional electromagnetic field on a local impedance section of a wavy surface is considered. The boundary-value problem for the system of Maxwell equations is reduced to solving a system of hypersingular integral equations. A numerical algorithm is developed and a program is designed for computing the electrodynamic characteristics of the given scattering problem. The accuracy of the simulation results is investigated. __________ Translated from Prikladnaya Matematika i Informatika, No. 25, pp. 56–69, 2007.  相似文献   

10.
The scalar problem of plane wave diffraction by a system of bodies and infinitely thin screens is considered in a quasi-classical formulation. The solution is sought in the classical sense but is defined not in the entire space ?3 but rather everywhere except for the screen edges. The original boundary value problem for the Helmholtz equation is reduced to a system of weakly singular integral equations in the regions occupied by the bodies and on the screen surfaces. The equivalence of the integral and differential formulations is proven, and the solvability of the system in the Sobolev spaces is established. The integral equations are approximately solved by the Bubnov-Galerkin method. The convergence of the method is proved, its software implementation is described, and numerical results are presented.  相似文献   

11.
We consider the three-dimensional Dirichlet problem for equations of elliptic type in inhomogeneous media. The problem can be reduced to a system of loaded Fredholm integral equations of the second kind over the volume. We prove the uniqueness of a classical solution of the problem. We suggest a numerical solution algorithm of iterative type. An example of the numerical solution of the problem is considered, and the convergence of the iterative procedure is demonstrated numerically.  相似文献   

12.
The three-dimensional evolution of the interface between fluids of different viscosities and densities in the case of a piston displacement is considered. The problem is reduced to a system of integral and differential equations, which are solved numerically by the method of discrete singularities. The practical convergence of the numerical scheme is analyzed, and the numerical results are compared with an analytical solution.  相似文献   

13.
The aim of this paper is to discuss the numerical performanceof the Galerkin method for the approximate solution of severaltwo-dimensional Fredholm integral equations of the first kindwith logarithmic kernel, and for the approximation of linearfunctionals of the solution. Predicted rates of convergenceare obtained from the theory in Sloan & Spence (1987), andthese are compared with the numerical rates for the case ofpiecewise constant approximation over equal subintervals. Thephenomenon of ‘superconvergence’ is analysed indetail and some examples are given which attain remarkably highrates of convergence.  相似文献   

14.
Solving fractional integral equations by the Haar wavelet method   总被引:1,自引:0,他引:1  
Haar wavelets for the solution of fractional integral equations are applied. Fractional Volterra and Fredholm integral equations are considered. The proposed method also is used for analysing fractional harmonic vibrations. The efficiency of the method is demonstrated by three numerical examples.  相似文献   

15.
Summary The present paper is concerned with finding an effective polynomial solution to a class of dual integral equations which arise in many mixed boundary value problems in the theory of elasticity. The dual integral equations are first transformed into a Fredholm integration equation of the second kind via an auxiliary function, which is next reduced to an infinite system of linear algebraic equations by representing the unknown auxiliary function in the form of an infinite series of Jacobi polynomials. The approximate solution of this infinite system of equations can be obtained by a suitable truncation. It is shown that the unknown function involving the dual integral equations can also be expressed in the form of an infinite series of Jacobi polynomials with the same expansion coefficients with no numerical integration involved. The main advantage of the present approach is that the solution of the dual integral equations thus obtained is numerically more stable than that obtained by reducing themdirectly into an infinite system of equations, insofar as the expansion coefficients are determined essentially by solving asecond kind integral equation.  相似文献   

16.
A numerical boundary integral scheme is proposed for the solution of the system of field equations of plane, linear elasticity in stresses for homogeneous, isotropic media in the domain bounded by an ellipse under mixed boundary conditions. The stresses are prescribed on one half of the ellipse, while the displacements are given on the other half. The method relies on previous analytical work within the Boundary Integral Method [1], [2].The considered problem with mixed boundary conditions is replaced by two subproblems with homogeneous boundary conditions, one of each type, having a common solution. The equations are reduced to a system of boundary integral equations, which is then discretized in the usual way and the problem at this stage is reduced to the solution of a rectangular linear system of algebraic equations. The unknowns in this system of equations are the boundary values of four harmonic functions which define the full elastic solution inside the domain, and the unknown boundary values of stresses or displacements on proper parts of the boundary.On the basis of the obtained results, it is inferred that the tangential stress component on the fixed part of the boundary has a singularity at each of the two separation points, thought to be of logarithmic type. A tentative form for the singular solution is proposed to calculate the full solution in bulk directly from the given boundary conditions using the well-known Boundary Collocation Method. It is shown that this addition substantially decreases the error in satisfying the boundary conditions on some interval not containing the singular points.The obtained results are discussed and boundary curves for unknown functions are provided, as well as three-dimensional plots for quantities of practical interest. The efficiency of the used numerical schemes is discussed, in what concerns the number of boundary nodes needed to calculate the approximate solution.  相似文献   

17.
In this article, we employ trigonometric wavelet bases to numerical solution of Fredholm integral equations of first kind in Holder space. Employment of Galerkin method for trigonometric wavelets in Fredholm integral equations of first kind has resulted in occurrence of two-dimensional trigonometric wavelets. Here, we present the convergence of two-dimensional trigonometric wavelets in numerical solution in Holder space C α([a, b]).  相似文献   

18.
This paper presents a numerical method for the solution of a Volterra–Fredholm integral equation in a Banach space. Banachs fixed point theorem is used to prove the existence and uniqueness of the solution. To find the numerical solution, the integral equation is reduced to a system of linear Fredholm integral equations, which is then solved numerically using the degenerate kernel method. Normality and continuity of the integral operator are also discussed. The numerical examples in Sect. 5 illustrate the applicability of the theoretical results.  相似文献   

19.
In this paper numerical solution of system of linear Fredholm integral equations by means of the Sinc-collocation method is considered. This approximation reduces the system of integral equations to an explicit system of algebraic equations. The exponential convergence rate of the method is proved. The method is applied to a few test examples with continuous kernels to illustrate the accuracy and the implementation of the method.  相似文献   

20.
A boundary integral method is developed for the mixed boundary value problem for the vector Helmholtz equation in R3. The obtained boundary integral equations for the unknown Cauchy data build a strong elliptic system of pseudodifferential equations which can therefore be used for numerical computations using Galerkin's procedure. We show existence, uniqueness and regularity of the solution of the integral equations. Especially we give the local "edge" behavior of the solution near the submanifold which divides the Dirichlet boundary from the Neumann boundary  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号