首页 | 本学科首页   官方微博 | 高级检索  
    检索          
共有20条相似文献,以下是第1-20项 搜索用时 343 毫秒

1.  灰色理论和BP神经网络在大学生就业信心指数预测中的应用  
   《数学的实践与认识》,2013年第13期
   采用大学生就业信心指数来分析预测其就业信心是值得研究的问题.提出一种灰色理论和BP神经网络相结合的方法对大学生就业信心指数进行预测.首先对影响就业信心的主要因素建立不同的灰色模型,然后将每个灰色模型的预测值作为神经网络的输入,利用神经网络进行组合预测以作为其最终的预测值.结果表明组合模型的预测值相对误差更小,精度更高.    

2.  地震作用下高层建筑结构的分散神经网络振动控制研究  
   汪权  韩强强  王肖东  袁加伟《计算力学学报》,2019年第36卷第1期
   针对地震作用下高层建筑振动神经网络控制问题,将神经网络理论与分散控制理论相结合,提出分散神经网络振动控制方案,并应用于高层结构地震反应振动控制中。利用多层前馈神经网络建立结构模型,预测结构的振动响应。基于NARMA-L2的神经自校正控制系统设计BP神经网络控制器,研究分散神经网络振动控制效果,并与神经网络集中控制进行比较。对某20层Benchmark结构模型进行数值模拟分析,结果表明,本文提出的分散神经网络振动控制方法简化了神经网络的结构,可有效控制结构振动和消除时滞;同时,相对于集中控制的单一失效,本文方法的可靠性更强且可以保证振动控制系统的实时响应。    

3.  混沌粒子群神经网络在上证指数预测中的应用  
   孟栋  樊重俊  刘思《数学理论与应用》,2014年第2期
   上证指数预测是一个非常复杂的非线性问题,为了提高对上证指数预测的准确性,本文采用基于混沌粒子群(CPSO)算法对BP神经网络算法改进的方法来进行预测.BP神经网络算法目前已经应用到预测、聚类、分类等许多领域,取得了不少的成果.但自身也有明显的缺点,比如易陷入局部极小值、收敛速度慢等.用混沌粒子群算法改进BP神经网络算法的基本思想是用混沌粒子群算法优化BP神经网络算法的权值和阈值,在粒子群算法中加入混沌元素,提高粒子群算法的全局搜索能力.对上证指数预测的结果表明改进后的预测方法,具有更好的准确性.    

4.  基于改进BP神经网络的中央空调冷负荷预测研究  
   王蕾  张九根  李腾  陈实《应用声学》,2014年第22卷第6期
   针对中央空调系统冷负荷预测中BP神经网络预测收敛慢,易陷入局部最优,精度相对低的缺点,采用了收敛速度快,全部搜索能力强的粒子群优化算法进行改进,同时对BP结构中的输入参数,添加控制误差反馈参数,形成了基于粒子群与控制误差回馈的BP神经网络预测技术;其预测精度较BP神经网络和粒子群BP神经网络分别提高5.94%和0.82%。    

5.  MEA-BP模型在遥感影像分类中的应用研究  
   王海军《数学的实践与认识》,2017年第2期
   遥感影像分类作为遥感技术的一个重要应用,对遥感技术的发展具有重要作用.针对遥感影像数据特点,在目前的非线性研究方法中主要用到的是BP神经网络模型.但是BP神经网络模型存在对初始权阈值敏感、易陷入局部极小值和收敛速度慢的问题.因此,为了提高模型遥感影像分类精度,提出采用MEA-BP模型进行遥感影像数据分类.首先采用思维进化算法代替BP神经网络算法进行初始寻优,再用改进BP算法对优化的网络模型权阈值进一步精确优化,随后建立基于思维进化算法的BP神经网络分类模型,并将其应用到遥感影像数据分类研究中.仿真结果表明,新模型有效提高了遥感影像分类准确性,为遥感影像分类提出了一种新的方法,具有广泛研究价值.    

6.  自组织理论和BP人工神经网络在税收预测中的应用研究  被引次数:3
   叶林《数学的实践与认识》,2006年第36卷第7期
   针对BP人工神经网络的结构特性,提出了将自组织理论与BP人工神经网络相结合的思想,不仅解决了输入待定的神经网络输入维数难确定的问题,而且加快了神经网络的收敛速度,增强了神经网络的适应能力.并将新建立的模型应用到税收预测中,得出了比常规经济学模型更优的效果.    

7.  提升小波包和改进BP神经网络相融合的新故障诊断算法  
   谭晓东  覃德泽《应用声学》,2014年第22卷第8期
   针对传统的小波变换和BP神经网络应用于故障诊断中存在自适应性差、效率低等问题,提出一种提升小波包和改进BP神经网络相融合的新故障诊断算法;利用插值细分思想,设计了提升小波包的预测算子和更新算子,结合传统小波包算法和提升模式的原理,完成了提升小波包算法的设计,并将该算法应用于故障信号的消噪和能量特征量的提取;利用遗传算法优化标准BP神经网络的初始权值和阈值,采用L-M算法优化标准BP神经网络的搜索方式;以美国凯斯西储大学提供的滚动轴承实验数据,将新算法应用于实验中,分析结果表明:新故障诊断算法比传统的BP神经网络算法具有收敛速度快、诊断精度高等实效性。    

8.  基于灰色神经网络的航空装备作战携行量预测  
   邵雨晗  辛后居  高辉  徐启丰《数学的实践与认识》,2016年第20期
   当前局势多变且节奏迅速的现代高新技术战争使得航空装备需求量与损耗率激增,航空装备保障人员也面临着战时保障情况复杂、决策难度增加的问题.在BP神经网络的基础上使用灰色理论对其进行了优化,将得到的灰色BP神经网络对航空装备作战携行数量进行了预测并与一般BP神经网络和GM(1,1)模型预测结果对比.结果表明:灰色BP神经网络预测精度高、收敛速度快、所需样本数据少,对航空装备作战携行数量预测具有重要价值.    

9.  基于BP神经网络的多传感器信息融合研究  
   夏菽兰  赵力《应用声学》,2015年第23卷第5期
   BP网络是应用最广的一种人工神经网络,将BP神经网络应用到压力检测领域的温度等非线性补偿,具有重要的实用价值,对压力检测精度的改进效果显著。从传感器信息融合的角度看,神经网络就是一个融合系统。通过对神经网络基本理论的阐述,针对研究对象将BP神经网络原理与多传感器信息融合技术有机集合起来,提出了基于BP神经网络的二传感器信息融合模型及改进算法,建立了BP神经网络训练标准样本库,并对该网络模型进行主要技术指标的测试和仿真工作,测试结果表明构建的模型及其改进算法能很好地满足了高精度压力检测仪的指标要求。    

10.  量子粒子群智能算法在国际布伦特原油价格预测中的应用  
   《模糊系统与数学》,2017年第4期
   原油价格的波动对世界经济政治形势具有重要的作用,其预测问题是维护原油生产、消费企业及国家利益的重大问题。因此,原油价格预测是国际市场研究的一个重要领域。本文将TSK模糊逻辑系统与神经网络结合,设计五层模糊神经网络系统,采用量子粒子群(QPSO)智能算法调整模糊神经网络系统的参数,将所设计的智能系统应用于国际布伦特原油价格预测中。并将QPSO算法与BP算法和最小二乘法进行比较,预测性能指标和仿真结果表明基于QPSO智能算法的模糊神经网络系统的设计是有效的,取得了更好的效果。    

11.  人工神经网络BP算法的改进和结构的自调整  被引次数:16
   刘光中  李晓峰《运筹学学报》,2001年第5卷第1期
   本文解决了BP神经网络结构参数和学习速率的选取问题,并对传统的BP算法进行了改进,提出了BP神经网络动态全参数自调整学习算法,又将其编制成计算机程序,使得隐层节点和学习速率的选取全部动态实现,减少了人为因素的干预,改善了学习速率和网络的适应能力。计算结果表明:BP神经网络动态全参数自调整算法较传统的方法优越。训练后的神经网络模型不仅能准确地拟合训练值,而且能较精确地预测未来趋势。    

12.  基于灰色系统理论的多元线性回归分析  被引次数:6
   苏变萍  曹艳平《数学的实践与认识》,2006年第36卷第8期
   运用灰色系统理论剔除了自变量观察数据中的噪声污染,对传统的多元线性回归分析方法进行了改进,建立了灰色多元线性回归分析模型.将模型应用于陕西省就业问题的研究,取得了满意的预测效果.    

13.  基于粒子群算法优化BP神经网络漏钢预报的研究  
   肖俊生  任祎龙《应用声学》,2015年第23卷第4期
   针对标准BP神经网络中收敛速度慢以及易陷入局部最优解等问题,利用粒子群算法的全局搜索性,将粒子群算法应用到BP神经网络训练中建立了PSO-BP神经网络模型,结果表明改进模型不仅可以克服传统 BP 网络收敛速度慢和易陷入局部权值的局限问题,而且很大程度地提高了结果精度和 BP 网络学习能力,将此模型应用到结晶器漏钢预报系统中,并用某钢厂采集到的历史数据对该模型进行训练与测试,与标准BP神经网络测试结果进行分析与比较,实验表明PSO-BP网络模型预报更加实时、准确,具有很好的应用前景。    

14.  基于LM算法的BP神经网络的电力负荷短期预测  
   刘进波  陈鑫  李新花《经济数学》,2015年第2期
   通过对BP神经网络输入负荷值的归一化处理,同时采用Levenberg-Marquardt(LM)算法,建立了一个改进了的BP神经网络,同时用它来对电力系统进行短期负荷预测.LM算法有效地提高了BP神经网络的收敛速度和负荷的预测精度.仿真结果表明,改进了的BP神经网络具有很高的预测精度和较强的适用能力.    

15.  基于改进BP神经网络的组合预测模型设计  
   王玉敏《数学的实践与认识》,2006年第36卷第4期
   为提高预测精度,解决非线性组合预测中的困难,利用改进BP神经网络对非线性组合预测模型进行了设计.讨论了模型设立的原则和一般程序,比较其与传统的组合预测方法之间的优劣,并给出实例加以验证.结果显示,基于改进BP神经网络的非线性组合预测模型能够准确描述系统中的非线性,提高预测精度.    

16.  基于PSO_Trainlm BP模型的图像去噪研究  
   王海军《数学的实践与认识》,2014年第21期
   针对在使用BP模型进行图像去噪时,模型存在的对初始权阈值敏感、易陷入局部极小值和收敛速度慢的问题.为了提高模型去噪效率,提出采用改进粒子群神经网络模型进行图像去噪.首先运用改进粒子群算法对BP神经网络权阈值进行初始寻优,再用trainlm BP算法对优化的网络权阈值进一步精确优化,随后建立基于粒子群算法的BP神经网络去噪模型,并将其应用到图像去噪研究中.仿真结果表明,新模型结合了粒子群算法的全局寻优能力和BP算法的局部搜索能力,减小了模型对初始权阈值的敏感性,有效防止了模型陷入局部极小值的可能,提高了图像去噪模型的速度和质量.    

17.  基于改进BP神经网络算法的激光晶体生长控制研究  
   李建鸿  纪文刚  宋星  储承贵《人工晶体学报》,2019年第8期
   针对激光晶体生长后期晶体生长炉温度上漂导致晶体不能维持等径生长的问题,采用一种基于自适应学习率优化算法改进BP神经网络与经典PID控制技术相结合的方法应用到晶体生长控制过程中,通过改进的BP神经网络的自学习以及调整加权系数,实现一种由BP神经网络整定的最佳PID控制。通过MATLAB/Simulink仿真对比表明,改进的BP神经网络PID控制算法较传统PID控制方法具有较好的控制性能和鲁棒性,能够有效克服晶体生长炉的温漂问题,更好地保持晶体等径生长,提高了控制精度。    

18.  人工神经网络在溶解度预测方面的应用  
   李鑫斐  赵林《化学通报》,2015年第78卷第3期
   溶解度作为一项重要的物化指标,一直是化学学科的研究重点.然而,通过实验测量获得数据耗时费力,因此,科研人员建立了多种理论方法来进行估算,其中,人工神经网络因其能够关联复杂的多变量情况而受到广泛关注.本文综述了人工神经网络在物质溶解度预测方面的应用,介绍了应用最广泛的3种神经网络(BP神经网络、小波神经网络、径向基神经网络)的模型结构、预测方法和预测优势,探讨了神经网络的不足以及改进方法.文章最后对神经网络在物质溶解度预测方面的发展前景进行了展望.与其他方法相比,人工神经网络技术在物质溶解度预测方面具有预测结果精确度高、操作简单等特点,具有广阔的应用前景,但输入变量选择、隐含层节点数确定、避免局部最优等问题还需逐步建立系统的理论指导.    

19.  BP神经网络在上海住宅市场需求预测中的应用  被引次数:5
   沙磊  韩丽川《数学的实践与认识》,2003年第33卷第11期
   人工神经网络是近期发展最快的人工智能领域研究成果之一 ,本文在介绍 BP神经网络的有关原理的基础上 ,建立了一个上海住宅市场的 BP神经网络模型 ,并通过该模型对上海住宅市场的需求进行了预测和分析 .分析结果表明人工神经网络方法在住宅市场需求预测中的应用是可行的并且是有效的 .    

20.  基于遗传神经网络的耙吸挖泥船泥泵转速预测  
   曹点点  苏贞  孙健《应用声学》,2017年第25卷第10期
   耙吸挖泥船泥泵管线模型是一个复杂的、非线性的动态模型,影响模型准确性的参数较多。为了根据当前施工条件和流量的优化值准确地预测转速,为施工人员提供参考,提高疏浚效率,采用了遗传算法改进的BP神经网络对泥泵转速进行预测。首先,遗传算法对BP神经网络的初始权值和阈值进行优化。然后,BP神经网络根据优化值对网络进行训练并对转速进行预测。为了验证该方法的有效性,将遗传BP神经网络的预测输出和实测泥泵转速进行对比。仿真结果表明:遗传BP神经网络具有很强的非线性拟合能力和全局搜索能力,能够准确地预测泥泵转速。该预测输出可为施工人员提供参考,以便改变泥泵转速,提高疏浚效率。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号