首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
We study the minimum semidefinite rank of a graph using vector representations of the graph and of certain subgraphs. We present a sufficient condition for when the vectors corresponding to a set of vertices of a graph must be linearly independent in any vector representation of that graph, and conjecture that the resulting graph invariant is equal to minimum semidefinite rank. Rotation of vector representations by a unitary matrix allows us to find the minimum semidefinite rank of the join of two graphs. We also improve upon previous results concerning the effect on minimum semidefinite rank of the removal of a vertex.  相似文献   

2.
For an undirected simple graph G, the minimum rank among all positive semidefinite matrices with graph G is called the minimum semidefinite rank (msr) of G. In this paper, we show that the msr of a given graph may be determined from the msr of a related bipartite graph. Finding the msr of a given bipartite graph is then shown to be equivalent to determining which digraphs encode the zero/nonzero pattern of a unitary matrix. We provide an algorithm to construct unitary matrices with a certain pattern, and use previous results to give a lower bound for the msr of certain bipartite graphs.  相似文献   

3.
A sign pattern matrix is a matrix whose entries are from the set {+,-,0}. For a real matrix B, sgn(B) is the sign pattern matrix obtained by replacing each positive (respectively, negative, zero) entry of B by + (respectively, −, 0). For a sign pattern matrix A, the sign pattern class of A, denoted Q(A), is defined as {B:sgn(B)=A}. The minimum rank mr(A) (maximum rank MR(A)) of a sign pattern matrix A is the minimum (maximum) of the ranks of the real matrices in Q(A). Several results concerning sign patterns A that require almost unique rank, that is to say, the sign patterns A such that MR(A) = mr(A) + 1, are established and are extended to sign patterns A for which the spread is d=MR(A)-mr(A). A complete characterization of the sign patterns that require almost unique rank is obtained.  相似文献   

4.
The minimum rank of a graph G is defined as the smallest possible rank over all symmetric matrices governed by G. It is well known that the minimum rank of a connected graph is at least the diameter of that graph. In this paper, we investigate the graphs for which equality holds between minimum rank and diameter, and completely describe the acyclic and unicyclic graphs for which this equality holds.  相似文献   

5.
For a graph G of order n, the minimum rank of G is defined to be the smallest possible rank over all real symmetric n×n matrices A whose (i,j)th entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. We prove an upper bound for minimum rank in terms of minimum degree of a vertex is valid for many graphs, including all bipartite graphs, and conjecture this bound is true over for all graphs, and prove a related bound for all zero-nonzero patterns of (not necessarily symmetric) matrices. Most of the results are valid for matrices over any infinite field, but need not be true for matrices over finite fields.  相似文献   

6.
Zero forcing sets and the minimum rank of graphs   总被引:2,自引:0,他引:2  
The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. This paper introduces a new graph parameter, Z(G), that is the minimum size of a zero forcing set of vertices and uses it to bound the minimum rank for numerous families of graphs, often enabling computation of the minimum rank.  相似文献   

7.
The minimum (symmetric) rank of a simple graph G over a field F is the smallest possible rank among all symmetric matrices over F whose ijth entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. The problem of determining minimum (symmetric) rank has been studied extensively. We define the minimum skew rank of a simple graph G to be the smallest possible rank among all skew-symmetric matrices over F whose ijth entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. We apply techniques from the minimum (symmetric) rank problem and from skew-symmetric matrices to obtain results about the minimum skew rank problem.  相似文献   

8.
The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a graph G, is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by G. It is shown that for a connected graph of order at least two, no vertex is in every zero forcing set. The positive semidefinite zero forcing number Z+(G) is introduced, and shown to be equal to |G|-OS(G), where OS(G) is the recently defined ordered set number that is a lower bound for minimum positive semidefinite rank. The positive semidefinite zero forcing number is applied to the computation of positive semidefinite minimum rank of certain graphs. An example of a graph for which the real positive symmetric semidefinite minimum rank is greater than the complex Hermitian positive semidefinite minimum rank is presented.  相似文献   

9.
The minimum skew rank of a simple graph G   is the smallest possible rank among all real skew-symmetric matrices whose (i,j)(i,j)-entry is nonzero if and only if the edge joining i and j is in G. It is known that a graph has minimum skew rank 2 if and only if it consists of a complete multipartite graph and some isolated vertices. Some necessary conditions for a graph to have minimum skew rank 4 are established, and several families of graphs with minimum skew rank 4 are given. Linear algebraic techniques are developed to show that complements of trees and certain outerplanar graphs have minimum skew rank 4.  相似文献   

10.
We exhibit a counterexample to a conjecture of Thomassen stating that the number of distinct 3-colorings of every graph whose 3-color matrix has full column rank is superpolynomial in the number of vertices.  相似文献   

11.
In this note, we combine a number of recent ideas to give new results on the graph complement conjecture for minimum semidefinite rank.  相似文献   

12.
An n×n sign pattern admits a matrix with zero-line-sums and rank n?1 if and only if it is fully indecomposable and every arc of an associated directed bipartite graph lies on a circuit. This proves a conjecture of Fiedler and Grone made in the study of sign patterns of inverse-positive matrices.  相似文献   

13.
A graph describes the zero-nonzero pattern of a family of matrices, with the type of graph (undirected or directed, simple or allowing loops) determining what type of matrices (symmetric or not necessarily symmetric, diagonal entries free or constrained) are described by the graph. The minimum rank problem of the graph is to determine the minimum among the ranks of the matrices in this family; the determination of maximum nullity is equivalent. This problem has been solved for simple trees [P.M. Nylen, Minimum-rank matrices with prescribed graph, Linear Algebra Appl. 248 (1996) 303-316, C.R. Johnson, A. Leal Duarte, The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree, Linear and Multilinear Algebra 46 (1999) 139-144], trees allowing loops [L.M. DeAlba, T.L. Hardy, I.R. Hentzel, L. Hogben, A. Wangsness. Minimum rank and maximum eigenvalue multiplicity of symmetric tree sign patterns, Linear Algebra Appl. 418 (2006) 389-415], and directed trees allowing loops [F. Barioli, S. Fallat, D. Hershkowitz, H.T. Hall, L. Hogben, H. van der Holst, B. Shader, On the minimum rank of not necessarily symmetric matrices: a preliminary study, Electron. J. Linear Algebra 18 (2000) 126-145]. We survey these results from a unified perspective and solve the minimum rank problem for simple directed trees.  相似文献   

14.
A sign pattern matrix (or nonnegative sign pattern matrix) is a matrix whose entries are from the set {+,?, 0} ({+, 0}, respectively). The minimum rank (or rational minimum rank) of a sign pattern matrix A is the minimum of the ranks of the matrices (rational matrices, respectively) whose entries have signs equal to the corresponding entries of A. Using a correspondence between sign patterns with minimum rank r ≥ 2 and point-hyperplane configurations in Rr?1 and Steinitz’s theorem on the rational realizability of 3-polytopes, it is shown that for every nonnegative sign pattern of minimum rank at most 4, the minimum rank and the rational minimum rank are equal. But there are nonnegative sign patterns with minimum rank 5 whose rational minimum rank is greater than 5. It is established that every d-polytope determines a nonnegative sign pattern with minimum rank d + 1 that has a (d + 1) × (d + 1) triangular submatrix with all diagonal entries positive. It is also shown that there are at most min{3m, 3n} zero entries in any condensed nonnegative m × n sign pattern of minimum rank 3. Some bounds on the entries of some integer matrices achieving the minimum ranks of nonnegative sign patterns with minimum rank 3 or 4 are established.  相似文献   

15.
The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. Minimum rank is a difficult parameter to compute. However, there are now a number of known reduction techniques and bounds that can be programmed on a computer; we have developed a program using the open-source mathematics software Sage to implement several techniques. We have also established several additional strategies for computation of minimum rank. These techniques have been used to determine the minimum ranks of all graphs of order 7.  相似文献   

16.
We study the relationship between the minimum dimension of an orthogonal representation of a graph over a finite field and the chromatic number of its complement. It turns out that for some classes of matrices defined by a graph the 3-colorability problem is equivalent to deciding whether the class defined by the graph contains a matrix of rank 3 or not. This implies the NP-hardness of determining the minimum rank of a matrix in such a class. Finally we give for any class of matrices defined by a graph that is interesting in this respect a reduction of the 3-colorability problem to the problem of deciding whether or not this class contains a matrix of rank equal to three.The author is financially supported by the Cooperation Centre Tilburg and Eindhoven Universities.  相似文献   

17.
In this paper, we modify Eschenbach’s algorithm for constructing sign idempotent sign pattern matrices so that it correctly constructs all of them. We find distinct classes of sign idempotent sign pattern matrices that are signature similar to an entrywise nonnegative sign pattern matrix. Additionally, if for a sign idempotent sign pattern matrix A there exists a signature matrix S such that SAS is nonnegative, we prove such S is unique up to multiplication by -1 if the signed digraph D(A) is not disconnected.  相似文献   

18.
The minimum rank of a graph is the smallest possible rank among all real symmetric matrices with the given graph. The minimum semidefinite rank of a graph is the minimum rank among Hermitian positive semidefinite matrices with the given graph. We explore connections between OS-sets and a lower bound for minimum rank related to zero forcing sets as well as exhibit graphs for which the difference between the minimum semidefinite rank and these lower bounds can be arbitrarily large.  相似文献   

19.
For a graph G of order n, the maximum nullity of G is defined to be the largest possible nullity over all real symmetric n×n matrices A whose (i,j)th entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. Maximum nullity and the related parameter minimum rank of the same set of matrices have been studied extensively. A new parameter, maximum generic nullity, is introduced. Maximum generic nullity provides insight into the structure of the null-space of a matrix realizing maximum nullity of a graph. It is shown that maximum generic nullity is bounded above by edge connectivity and below by vertex connectivity. Results on random graphs are used to show that as n goes to infinity almost all graphs have equal maximum generic nullity, vertex connectivity, edge connectivity, and minimum degree.  相似文献   

20.
Suppose P is a property referring to a real matrix. We say that a sign pattern A allows P if there exists at least one matrix with the same sign pattern as A that has the property P. In this paper, we study sign patterns allowing nilpotence of index 3. Four methods for constructing sign patterns that allow nilpotence of index 3 are obtained. All tree sign patterns that allow nilpotence of index 3 are characterized. Sign patterns of order 3 that allow nilpotence are identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号