首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary For solving Laplace's boundary value problems with singularities, a nonconforming combined approach of the Ritz-Galerkin method and the finite element method is presented. In this approach, singular functions are chosen to be admissible functions in the part of a solution domain where there exist singularities; and piecewise linear functions are chosen to be admissible functions in the rest of the solution domain. In addition, the admissible functions used here are constrained to be continuous only at the element nodes on the common boundary of both methods. This method is nonconforming; however, the nonconforming effect does not result in larger errors of numerical solutions as long as a suitable coupling strategy is used.In this paper, we will develop such an approach by using a new coupling strategy, which is described as follows: IfL+1=O(|lnh|), the average errors of numerical solutions and their generalized derivatives are stillO(h), whereh is the maximal boundary length of quasiuniform triangular elements in the finite element method, andL+1 is the total number of singular admissible functions in the Ritz-Galerkin method. The coupling relation,L+1=O(|lnh|), is significant because only a few singular functions are required for a good approximation of solutions.This material is from Chapter 5 in my Ph.D. thesis: Numerical Methods for Elliptic Boundary Value Problems with Singularities. Part I: Boundary Methods for Solving Elliptic Problems with Singularities. Part II: Nonconforming Combinations for Solving Elliptic Problems with Singularities, the Department of Mathematics and Applied Mathematics, University of Toronto, May 1986  相似文献   

2.
Summary Given a system of analytic equations having a singular solution, we show how to develop a power series representation for the solution. This series is computable, and when the multiplicity of the solution is small, highly accurate estimates of the solution can be generated for a moderate computational cost. In this paper, a theorem is proven (using results from several complex variables) which establishes the basis for the approach. Then a specific numerical method is developed, and data from numerical experiments are given.  相似文献   

3.
This work deals with the convergence and stability of Runge–Kutta methods for systems of differential equation with piecewise continuous arguments x(t) = Px(t)+Qx([t+1∕2]) under two cases for coe?cient matrix. First, when P and Q are complex matrices, the su?cient condition under which the analytic solution is asymptotically stable is given. It is proven that the Runge–Kutta methods are convergent with order p. Moreover, the su?cient condition under which the analytical stability region is contained in the numerical stability region is obtained. Second, when P and Q are commutable Hermitian matrices, using the theory of characteristic, the necessary and su?cient conditions under which the analytic solution and the numerical solution are asymptotically stable are presented, respectively. Furthermore, whether the Runge–Kutta methods preserve the stability of analytic solution are investigated by the theory of Padé approximation and order star. To demonstrate the theoretical results, some numerical experiments are adopted.  相似文献   

4.
In this paper, we introduce systems of Volterra integral forms of the Lane–Emden equations. We use the systematic Adomian decomposition method to handle these systems of integral forms. The Volterra integral forms overcome the singular behavior at the origin x = 0. The Adomian decomposition method gives reliable algorithm for analytic approximate solutions of these systems. Our results are supported by investigating several numerical examples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In this article, we discuss the analytic solution of the fully developed shock waves. The homotopy perturbation method is used to solve the shock wave equation, which describes the flow of gases. Unlike the various numerical techniques, which are usually valid for short period of time, the solution of the presented equation is analytic for 0 < t < ∞. The results presented converge very rapidly, indicating that the method is reliable and accurate.  相似文献   

6.
We consider the approximation of a coupled system of two singularly perturbed reaction-diffusion equations by the finite element method. The solution to such problems contains boundary layers which overlap and interact, and the numerical approximation must take this into account in order for the resulting scheme to converge uniformly with respect to the singular perturbation parameters. We present results on a high order hp finite element scheme which includes elements of size O (εp) and O (μp) near the boundary, where ε, μ are the singular perturbation parameters and p is the degree of the approximating polynomials. Under the assumption of analytic input data, the method yields exponential rates of convergence as p → ∞, independently of ε and μ. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We study the analytic properties of the solution to a system of elliptic-parabolic equations simulating a semiconductor device. We describe the optimal regularity of the solution and its asymptotic behavior at the singular points of the problem.This paper is based on the thesis dissertation presented at the University of Chicago, Chicago, Illinois, in December 1989.  相似文献   

8.
An iterative method of finding a singular solution to the problem of minimizing resource consumption has been developed. This method is based on the information about the finite control structure. A condition for existence of a singular solution is obtained. The limit value for transferring the time between the normal and the singular solutions is found. A relation between the variations of the control switching instants and the variations of the initial conditions of the adjoint system is found. A system of linear algebraic equations relating the variations of the initial conditions of the adjoint system to the deviations of the phase coordinates from a given final state of the system is obtained. The calculation algorithm and the results of modeling and numerical calculations are presented.  相似文献   

9.
Summary A solution of a nonlinear equation in Hilbert spaces is said to be a simple singular solution if the Fréchet derivative at the solution has one-dimensional kernel and cokernel. In this paper we present the enlargement procedure for resolution of singularities at simple singular solutions of nonlinear equations. Once singularities are resolved, we can compute accurately the singular solution by Newton's method. Conditions for which the procedure terminates in finite steps are given. In particular, if the equation defined in n is analytic and the simple singular solution is geometrically isolated, the procedure stops in finite steps, and we obtain the enlarged problem with an isolated solution. Numerical examples are given.This research is partially supported by Grant-in-Aid for Encouragment of Young Scientist No. 60740119, the Ministry of EducationDedicated to Professor Seiiti Huzino on his 60th birthday  相似文献   

10.
关于多裂纹圆柱体的扭转*   总被引:1,自引:0,他引:1  
本文在文[1]基础上,导出了含有任意分布裂纹系的圆柱扭曲函数的解析表达式,从而把问题化为以未知位错密度函数表示的奇异积分方程组.文中利用奇异积分方程的数值方法[2,7],对带有多根裂纹的圆柱的抗扭刚度和应力强度因子作了若干数值计算.此外,本文还首次将裂纹切割法[5]推广用于求解矩形柱的扭转,数值结果表明方法是成功的.  相似文献   

11.
Summary The existence of attractive cycles constitutes a serious impediment to the solution of nonlinear equations by iterative methods. This problem is illustrated in the case of the solution of the equationz tanz=c, for complex values ofc, by Newton's method. Relevant results from the theory of the iteration of rational functions are cited and extended to the analysis of this case, in which a meromorphic function is iterated. Extensive numerical results, including many attractive cycles, are summarized.This work was supported in part by the Natural Sciences and Engineering Research Council of Canada under grants A3028 and A7691  相似文献   

12.
This paper is concerned with the structure of the singular and regular parts of the solution of time‐harmonic Maxwell's equations in polygonal plane domains and their effective numerical treatment. The asymptotic behaviour of the solution near corner points of the domain is studied by means of discrete Fourier transformation and it is proved that the solution of the boundary value problem does not belong locally to H2 when the boundary of the domain has non‐acute angles. A splitting of the solution into a regular part belonging to the space H2, and an explicitly described singular part is presented. For the numerical treatment of the boundary value problem, we propose a finite element discretization which combines local mesh grading and the singular field methods and derive a priori error estimates that show optimal convergence as known for the classical finite element method for problems with regular solutions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Summary A class of preconditioning methods depending on a relaxation parameter is presented for the solution of large linear systems of equationAx=b, whereA is a symmetric positive definite matrix. The methods are based on an incomplete factorization of the matrixA and include both pointwise and blockwise factorization. We study the dependence of the rate of convergence of the preconditioned conjugate gradient method on the distribution of eigenvalues ofC –1 A, whereC is the preconditioning matrix. We also show graphic representations of the eigenvalues and present numerical tests of the methods.  相似文献   

14.
In this paper we study the numerical solution of singular Abel–Volterra integro-differential equations, which are typical for the theory of anomalous diffusion and viscoelastic delayed stresses. The proposed method is based on application of the operational and almost operational matrices to derivatives and integrals in a vicinity of the kernel’s singular point. As examples, two orthonormal systems are considered: Bernstein polynomials and Legendre wavelets. The methods convert the singular integro-differential equation in to a system of algebraic equations that implies two advantages: (i) one does not need to introduce artificial smoothing factors into the singular integrand and (ii) the direct estimation of computational error around singular point is possible via the obtained explicit expression. The examples of numerical solution and their discussion are presented.  相似文献   

15.
 This paper generalizes results of Lempert and Sz?ke on the structure of the singular set of a solution of the homogeneous Monge-Ampère equation on a Stein manifold. Their a priori assumption that the singular set has maximum dimension is shown to be a consequence of regularity of the solution. In addition, their requirement that the square of the solution be C 3 everywhere is replaced by a smoothness condition on the blowup of the singular set. Under these conditions, the singular set is shown to inherit a Finsler metric, which in the real analytic case uniquely determines the solution of the Monge-Ampère equation. These results are proved using techniques from contact geometry. Received: 6 April 2001 / Published online: 2 December 2002 Mathematics Subject Classification (2000): 53C56, 32F, 53C60  相似文献   

16.
Nonstationary phase processes are defined and a surrogate distribution approximation (SDA) method for analyzing transient and nonstationary queueing systems with nonstationary phase arrival processes is presented. Regardless of system capacityc, the SDA method requires the numerical solution of only 6K differential equations, whereK is the number of phases in the arrival process, compared to theK(c+1) Kolmogorov forward equations required for the classical method of solution. Time-dependent approximations of mean and variance of the number of entities in the system and the number of busy servers are obtained. Empirical test results over a wide range of systems indicate the SDA is quite accurate.This research was partially funded by National Science Foundation grant ECS-8404409.  相似文献   

17.
Summary This paper extends the singular value decomposition to a path of matricesE(t). An analytic singular value decomposition of a path of matricesE(t) is an analytic path of factorizationsE(t)=X(t)S(t)Y(t) T whereX(t) andY(t) are orthogonal andS(t) is diagonal. To maintain differentiability the diagonal entries ofS(t) are allowed to be either positive or negative and to appear in any order. This paper investigates existence and uniqueness of analytic SVD's and develops an algorithm for computing them. We show that a real analytic pathE(t) always admits a real analytic SVD, a full-rank, smooth pathE(t) with distinct singular values admits a smooth SVD. We derive a differential equation for the left factor, develop Euler-like and extrapolated Euler-like numerical methods for approximating an analytic SVD and prove that the Euler-like method converges.Partial support received from SFB 343, Diskrete Strukturen in der Mathematik, Universität BielefeldPartial support received from FSP Mathematisierung, Universität BielefeldPartial support received from FSP Mathematisierung, Universität BielefeldPartial support received from National Science Foundation grant CCR-8820882. Some support was also received from the University of Kansas through International Travel Fund 560478 and General Research Allocations # 3758-20-0038 and #3692-20-0038.  相似文献   

18.
A typical power series analytic solution of quasi‐Laplace equation in the infinitesimal angle domain around the singular point of the square cells is provided in this article. Toward the singular point, the gradient of the potential variable will tend to infinity, which is described by the first term of the power series solution. Based on this analytic solution, three finite analytic numerical methods are proposed. These methods are analogous and are constructed, respectively, when considering different numbers of the terms or using different schemes to determine the relevant parameters in the power series. Numerical examples show that all of the three finite analytic numerical methods proposed can provide rather accurate solutions than the traditional numerical methods. In contrast, when using the traditional numerical schemes to solve the quasi‐Laplace equation in a strong heterogeneous medium, the refinement ratio for the grid cell needs to increase dramatically to get an accurate result. In practical applications, subdividing each origin cell into 2 × 2 or 3 × 3 subcells is enough for the finite analytical numerical methods to get relatively accurate results. The finite analytical numerical methods are also convenient to construct the flux field with high accuracy.© 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1755–1769, 2014  相似文献   

19.
This article deals with the analytic and numerical stability of numerical methods for a parabolic partial differential equation with piecewise continuous arguments of alternately retarded and advanced type. First, application of the theory of separation of variables in matrix form and the Fourier method, the necessary and sufficient condition under which the analytic solution is asymptotically stable is derived. Then, the θ‐methods are applied to solve the corresponding initial value problem, the sufficient conditions for the asymptotic stability of numerical methods are obtained. Finally, several numerical examples are presented to support the theoretical results. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 531–545, 2017  相似文献   

20.
Summary A number of iterative methods for the solution of the singular linear systemAx=b (det(A)=0 andb in the range ofA) is analyzed and studied. Among them are the Stationaryk-Step, the Accelerated Overrelaxation (AOR) and the Nonstationary Second Order Chebyshev Semi-Iterative ones. It is proved that, under certain assumptions, the corresponding optimum semiconvergent schemes, which present a great resemblance with their analogs for the nonsingular case, can be determined. Finally, a number of numerical examples shows how one can use the theory to obtain the optimum parameters for each applicable semiconvergent method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号